Does the category of finite dimensional free modules over a principal ideal domain have all finite colimits?A surjective homomorphism between finite free modules of the same rankSources on a category of ordinalsMonads on Set and their strengthFree objects in the category of dg modulesWhat does the type theory of a free-category-over-M look like?What's wrong or where is the AOC required in this proof? (free modules over a PID)Refinement of the structure theorem of finitely generated modules over a principal ideal domainWhy is $mathbb Z_p$ a free $mathbb Z$-module? Equivalently, why is $mathbb Q_p$ finite dimensional over $mathbb Q$?If ideal $I$ of domain $R$ is free $R$-module, then $I$ is principal ideal.Does the comma category of a set over category of graphs have initial and terminal objects?

Why does the hash of infinity have the digits of π?

Shorten or merge multiple lines of `&> /dev/null &`

What is the meaning of "<&3" and "done < file11 3< file22"

How can I make an argument that my time is valuable?

Are there any German nonsense poems (Jabberwocky)?

Of strange atmospheres - the survivable but unbreathable

Security vulnerabilities of POST over SSL

Why does this if statement return true

How to patch glass cuts in a bicycle tire?

Count all vowels in string

Is my plasma cannon concept viable?

Dad jokes are fun

What could a self-sustaining lunar colony slowly lose that would ultimately prove fatal?

Time complexity of an algorithm: Is it important to state the base of the logarithm?

Is it legal to have an abortion in another state or abroad?

便利な工具 what does な means

Why are GND pads often only connected by four traces?

Can my floppy disk still work without a shutter spring?

Find this cartoon

Is it truly impossible to tell what a CPU is doing?

How to deal with a colleague who is being aggressive?

What is the use case for non-breathable waterproof pants?

Best material to absorb as much light as possible

Is there any relationship between frequency of signal and distance it travels?



Does the category of finite dimensional free modules over a principal ideal domain have all finite colimits?


A surjective homomorphism between finite free modules of the same rankSources on a category of ordinalsMonads on Set and their strengthFree objects in the category of dg modulesWhat does the type theory of a free-category-over-M look like?What's wrong or where is the AOC required in this proof? (free modules over a PID)Refinement of the structure theorem of finitely generated modules over a principal ideal domainWhy is $mathbb Z_p$ a free $mathbb Z$-module? Equivalently, why is $mathbb Q_p$ finite dimensional over $mathbb Q$?If ideal $I$ of domain $R$ is free $R$-module, then $I$ is principal ideal.Does the comma category of a set over category of graphs have initial and terminal objects?













2












$begingroup$


A paper I'm reading states this fact without proof, and I can't seem to find a proof for it.










share|cite|improve this question









$endgroup$











  • $begingroup$
    link the article?
    $endgroup$
    – Alexander Gruber
    2 days ago















2












$begingroup$


A paper I'm reading states this fact without proof, and I can't seem to find a proof for it.










share|cite|improve this question









$endgroup$











  • $begingroup$
    link the article?
    $endgroup$
    – Alexander Gruber
    2 days ago













2












2








2





$begingroup$


A paper I'm reading states this fact without proof, and I can't seem to find a proof for it.










share|cite|improve this question









$endgroup$




A paper I'm reading states this fact without proof, and I can't seem to find a proof for it.







category-theory free-modules






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 10 at 19:03









violetavioleta

387210




387210











  • $begingroup$
    link the article?
    $endgroup$
    – Alexander Gruber
    2 days ago
















  • $begingroup$
    link the article?
    $endgroup$
    – Alexander Gruber
    2 days ago















$begingroup$
link the article?
$endgroup$
– Alexander Gruber
2 days ago




$begingroup$
link the article?
$endgroup$
– Alexander Gruber
2 days ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

Yes. First, the category of finitely generated modules has all finite colimits (it is closed under finite colimits in the category of all modules). But the category of finite rank free modules is a reflective subcategory: the reflector just mods out the torsion submodule (here we use the fact that any finitely generated torsion-free module is free). It follows that the category of finite rank free modules also has all finite colimits.



Explicitly, given a finite diagram, you compute its colimit as usual in the category of modules, and then mod out the torsion submodule to get the colimit in the category of finite rank free modules. This still has the required universal property because any map to a free module will vanish on the torsion submodule.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
    $endgroup$
    – violeta
    May 10 at 19:21






  • 2




    $begingroup$
    A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
    $endgroup$
    – Eric Wofsey
    May 10 at 19:23










  • $begingroup$
    Oh, I see! Thanks a lot :)
    $endgroup$
    – violeta
    May 10 at 19:46











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3221322%2fdoes-the-category-of-finite-dimensional-free-modules-over-a-principal-ideal-doma%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Yes. First, the category of finitely generated modules has all finite colimits (it is closed under finite colimits in the category of all modules). But the category of finite rank free modules is a reflective subcategory: the reflector just mods out the torsion submodule (here we use the fact that any finitely generated torsion-free module is free). It follows that the category of finite rank free modules also has all finite colimits.



Explicitly, given a finite diagram, you compute its colimit as usual in the category of modules, and then mod out the torsion submodule to get the colimit in the category of finite rank free modules. This still has the required universal property because any map to a free module will vanish on the torsion submodule.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
    $endgroup$
    – violeta
    May 10 at 19:21






  • 2




    $begingroup$
    A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
    $endgroup$
    – Eric Wofsey
    May 10 at 19:23










  • $begingroup$
    Oh, I see! Thanks a lot :)
    $endgroup$
    – violeta
    May 10 at 19:46















5












$begingroup$

Yes. First, the category of finitely generated modules has all finite colimits (it is closed under finite colimits in the category of all modules). But the category of finite rank free modules is a reflective subcategory: the reflector just mods out the torsion submodule (here we use the fact that any finitely generated torsion-free module is free). It follows that the category of finite rank free modules also has all finite colimits.



Explicitly, given a finite diagram, you compute its colimit as usual in the category of modules, and then mod out the torsion submodule to get the colimit in the category of finite rank free modules. This still has the required universal property because any map to a free module will vanish on the torsion submodule.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
    $endgroup$
    – violeta
    May 10 at 19:21






  • 2




    $begingroup$
    A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
    $endgroup$
    – Eric Wofsey
    May 10 at 19:23










  • $begingroup$
    Oh, I see! Thanks a lot :)
    $endgroup$
    – violeta
    May 10 at 19:46













5












5








5





$begingroup$

Yes. First, the category of finitely generated modules has all finite colimits (it is closed under finite colimits in the category of all modules). But the category of finite rank free modules is a reflective subcategory: the reflector just mods out the torsion submodule (here we use the fact that any finitely generated torsion-free module is free). It follows that the category of finite rank free modules also has all finite colimits.



Explicitly, given a finite diagram, you compute its colimit as usual in the category of modules, and then mod out the torsion submodule to get the colimit in the category of finite rank free modules. This still has the required universal property because any map to a free module will vanish on the torsion submodule.






share|cite|improve this answer











$endgroup$



Yes. First, the category of finitely generated modules has all finite colimits (it is closed under finite colimits in the category of all modules). But the category of finite rank free modules is a reflective subcategory: the reflector just mods out the torsion submodule (here we use the fact that any finitely generated torsion-free module is free). It follows that the category of finite rank free modules also has all finite colimits.



Explicitly, given a finite diagram, you compute its colimit as usual in the category of modules, and then mod out the torsion submodule to get the colimit in the category of finite rank free modules. This still has the required universal property because any map to a free module will vanish on the torsion submodule.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 10 at 19:22

























answered May 10 at 19:08









Eric WofseyEric Wofsey

197k14229360




197k14229360











  • $begingroup$
    Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
    $endgroup$
    – violeta
    May 10 at 19:21






  • 2




    $begingroup$
    A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
    $endgroup$
    – Eric Wofsey
    May 10 at 19:23










  • $begingroup$
    Oh, I see! Thanks a lot :)
    $endgroup$
    – violeta
    May 10 at 19:46
















  • $begingroup$
    Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
    $endgroup$
    – violeta
    May 10 at 19:21






  • 2




    $begingroup$
    A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
    $endgroup$
    – Eric Wofsey
    May 10 at 19:23










  • $begingroup$
    Oh, I see! Thanks a lot :)
    $endgroup$
    – violeta
    May 10 at 19:46















$begingroup$
Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
$endgroup$
– violeta
May 10 at 19:21




$begingroup$
Interesting, do you have any reference on the proof that the category of finitely generated modules has all finite colimits?
$endgroup$
– violeta
May 10 at 19:21




2




2




$begingroup$
A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
$endgroup$
– Eric Wofsey
May 10 at 19:23




$begingroup$
A finite colimit (in the category of all modules) of finitely generated modules is finitely generated; this follows immediately from the explicit construction of colimits as a quotient of the coproduct of all the objects in the diagram (the coproduct in this case being a finite direct sum).
$endgroup$
– Eric Wofsey
May 10 at 19:23












$begingroup$
Oh, I see! Thanks a lot :)
$endgroup$
– violeta
May 10 at 19:46




$begingroup$
Oh, I see! Thanks a lot :)
$endgroup$
– violeta
May 10 at 19:46

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3221322%2fdoes-the-category-of-finite-dimensional-free-modules-over-a-principal-ideal-doma%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020