Function on the set of limit countable ordinalsA question about $dotS^Q$-semiproperness and revised countable support iterated forcing of length a limit ordinalCofinality of countable ordinals in ZF, and in toposesOn a characterization of the recursively inaccessible ordinalsMemorable ordinalsProblem with definability in the constructible hierarchySplitting of ordinals of oscillation ranks of a Baire $1$ functionDo these ordinals exist?Connection between countable ordinals and Turing degreesFormalizations of The Matchstick Diagram Representation of OrdinalsIs the smallest $L_alpha$ with undefinable ordinals always countable?

Function on the set of limit countable ordinals


A question about $dotS^Q$-semiproperness and revised countable support iterated forcing of length a limit ordinalCofinality of countable ordinals in ZF, and in toposesOn a characterization of the recursively inaccessible ordinalsMemorable ordinalsProblem with definability in the constructible hierarchySplitting of ordinals of oscillation ranks of a Baire $1$ functionDo these ordinals exist?Connection between countable ordinals and Turing degreesFormalizations of The Matchstick Diagram Representation of OrdinalsIs the smallest $L_alpha$ with undefinable ordinals always countable?













4












$begingroup$


Let $Lambda$ be the set of all countable limit ordinals. Does there exist an injective function $f:Lambdatoomega_1$ with the properties:



  1. $forall lambdainLambda:~f(lambda)<lambda$


  2. $forallalpha<omega_1~~existsbeta<omega_1~~foralllambda>beta:~f(lambda)>alpha$ ?









share|cite|improve this question









$endgroup$







  • 5




    $begingroup$
    Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
    $endgroup$
    – Wojowu
    Apr 24 at 8:25















4












$begingroup$


Let $Lambda$ be the set of all countable limit ordinals. Does there exist an injective function $f:Lambdatoomega_1$ with the properties:



  1. $forall lambdainLambda:~f(lambda)<lambda$


  2. $forallalpha<omega_1~~existsbeta<omega_1~~foralllambda>beta:~f(lambda)>alpha$ ?









share|cite|improve this question









$endgroup$







  • 5




    $begingroup$
    Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
    $endgroup$
    – Wojowu
    Apr 24 at 8:25













4












4








4





$begingroup$


Let $Lambda$ be the set of all countable limit ordinals. Does there exist an injective function $f:Lambdatoomega_1$ with the properties:



  1. $forall lambdainLambda:~f(lambda)<lambda$


  2. $forallalpha<omega_1~~existsbeta<omega_1~~foralllambda>beta:~f(lambda)>alpha$ ?









share|cite|improve this question









$endgroup$




Let $Lambda$ be the set of all countable limit ordinals. Does there exist an injective function $f:Lambdatoomega_1$ with the properties:



  1. $forall lambdainLambda:~f(lambda)<lambda$


  2. $forallalpha<omega_1~~existsbeta<omega_1~~foralllambda>beta:~f(lambda)>alpha$ ?






set-theory ordinal-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 24 at 6:13









ar.grigar.grig

1




1







  • 5




    $begingroup$
    Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
    $endgroup$
    – Wojowu
    Apr 24 at 8:25












  • 5




    $begingroup$
    Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
    $endgroup$
    – Wojowu
    Apr 24 at 8:25







5




5




$begingroup$
Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
$endgroup$
– Wojowu
Apr 24 at 8:25




$begingroup$
Though the answer below answers your question, you might be interested to know that an injective function $f:Lambdatoomega_1$ automatically satisfies $2$: for any $gammaleqalpha$ there is at most one ordinal $a_gamma$ such that $f(a_gamma)=gamma$. Then $beta=sup_gammaleqalphaa_gamma$ will work.
$endgroup$
– Wojowu
Apr 24 at 8:25










1 Answer
1






active

oldest

votes


















10












$begingroup$

No. The first property is known as $f$ being regressive. Fodor’s Lemma says that any regressive function on a stationary set is constant on a stationary subset. In particular, because $Lambda$ is club (and thus stationary), such $f$ cannot be injective.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329817%2ffunction-on-the-set-of-limit-countable-ordinals%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    No. The first property is known as $f$ being regressive. Fodor’s Lemma says that any regressive function on a stationary set is constant on a stationary subset. In particular, because $Lambda$ is club (and thus stationary), such $f$ cannot be injective.






    share|cite|improve this answer









    $endgroup$

















      10












      $begingroup$

      No. The first property is known as $f$ being regressive. Fodor’s Lemma says that any regressive function on a stationary set is constant on a stationary subset. In particular, because $Lambda$ is club (and thus stationary), such $f$ cannot be injective.






      share|cite|improve this answer









      $endgroup$















        10












        10








        10





        $begingroup$

        No. The first property is known as $f$ being regressive. Fodor’s Lemma says that any regressive function on a stationary set is constant on a stationary subset. In particular, because $Lambda$ is club (and thus stationary), such $f$ cannot be injective.






        share|cite|improve this answer









        $endgroup$



        No. The first property is known as $f$ being regressive. Fodor’s Lemma says that any regressive function on a stationary set is constant on a stationary subset. In particular, because $Lambda$ is club (and thus stationary), such $f$ cannot be injective.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 24 at 6:54









        Monroe EskewMonroe Eskew

        8,03922565




        8,03922565



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329817%2ffunction-on-the-set-of-limit-countable-ordinals%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to write a 12-bar blues melodyI-IV-V blues progressionHow to play the bridges in a standard blues progressionHow does Gdim7 fit in C# minor?question on a certain chord progressionMusicology of Melody12 bar blues, spread rhythm: alternative to 6th chord to avoid finger stretchChord progressions/ Root key/ MelodiesHow to put chords (POP-EDM) under a given lead vocal melody (starting from a good knowledge in music theory)Are there “rules” for improvising with the minor pentatonic scale over 12-bar shuffle?Confusion about blues scale and chords

            Esgonzo ibérico Índice Descrición Distribución Hábitat Ameazas Notas Véxase tamén "Acerca dos nomes dos anfibios e réptiles galegos""Chalcides bedriagai"Chalcides bedriagai en Carrascal, L. M. Salvador, A. (Eds). Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, Madrid. España.Fotos

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020