Using NDEigensystem to solve the Mathieu equationHow to correctly use DSolve when the force is an impulse (dirac delta) and initial conditions are not zeroFEM Solution desired for “Plate with orifice” deflection: Application of Boundary Conditions and use of RegionsFinding eigenvalues for Laplacian operator for 3D shape with Neumann boundary conditionsNDEigensystem for structural vibrationHow do you find the eigenvalues of a PDE (Dynamic Euler-Bernoulli beam)?Using NDEigensystem to solve coupled eigenvalue problemHow to use DEigensystem with periodic boundary conditions on the derivative?Defining a function that outputs a matrix, and later finding its eigenvaluesInterface points of NDEigensystemEvaluating Hough functions by using NDEigensystem on the Laplace tidal equation

As matter approaches a black hole, does it speed up?

Pressure inside an infinite ocean?

How can I support myself financially as a 17 year old with a loan?

Why was the battle set up *outside* Winterfell?

Why isn't nylon as strong as kevlar?

Would the Disguise Self spell be able to reveal hidden birthmarks/tattoos (of the person they're disguised as) to a character?

What property of a BJT transistor makes it an amplifier?

Can there be a single technologically advanced nation, in a continent full of non-technologically advanced nations?

Out of scope work duties and resignation

Should I replace my bicycle tires if they have not been inflated in multiple years

Multi-channel audio upsampling interpolation

How do I make a function that generates nth natural number that isn't a perfect square?

Expressing 'our' for objects belonging to our apartment

How to apply differences on part of a list and keep the rest

How do I overfit?

Fitch Proof Question

How should I tell my manager I'm not paying for an optional after work event I'm not going to?

I need a disease

Why is Arya visibly scared in the library in S8E3?

I have a unique character that I'm having a problem writing. He's a virus!

On which topic did Indiana Jones write his doctoral thesis?

Getting a W on your transcript for grad school applications

What matters more when it comes to book covers? Is it ‘professional quality’ or relevancy?

What was the design of the Macintosh II's MMU replacement?



Using NDEigensystem to solve the Mathieu equation


How to correctly use DSolve when the force is an impulse (dirac delta) and initial conditions are not zeroFEM Solution desired for “Plate with orifice” deflection: Application of Boundary Conditions and use of RegionsFinding eigenvalues for Laplacian operator for 3D shape with Neumann boundary conditionsNDEigensystem for structural vibrationHow do you find the eigenvalues of a PDE (Dynamic Euler-Bernoulli beam)?Using NDEigensystem to solve coupled eigenvalue problemHow to use DEigensystem with periodic boundary conditions on the derivative?Defining a function that outputs a matrix, and later finding its eigenvaluesInterface points of NDEigensystemEvaluating Hough functions by using NDEigensystem on the Laplace tidal equation













6












$begingroup$


To be able to apply the differential equation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.



As a test problem, I am using an algebraic version of the Mathieu equation,



$$(1-zeta^2)w^primeprime-zeta w^prime+left(a+2q-4qzeta^2right)w=0$$



For this example I set $q=4/3$ and take only the first three eigenpairs:



m = 3; q = 4/3;
op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
bc = DirichletCondition[u[ζ] == 0, True];
λ, fl = NDEigensystem[op, bc, u, ζ, 0, 1, m];


I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for its evaluation:



λt = Table[MathieuCharacteristicB[2 k, q], k, m];
flt = Table[With[k = k, q = q,
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];


The problem is, I do not get the expected eigenvalues!



λ
(* 4.0708, 17.3259, 39.1877 *)
N[λt]
(* 3.85298, 16.0581, 36.0254 *)


And of course, plotting shows that the eigenequation is not satisfied at all:



With[u = fl[[1]], b = λ[[1]],
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]
With[u = flt[[1]], b = λt[[1]],
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]


What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any good ideas would be welcome.










share|improve this question











$endgroup$
















    6












    $begingroup$


    To be able to apply the differential equation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.



    As a test problem, I am using an algebraic version of the Mathieu equation,



    $$(1-zeta^2)w^primeprime-zeta w^prime+left(a+2q-4qzeta^2right)w=0$$



    For this example I set $q=4/3$ and take only the first three eigenpairs:



    m = 3; q = 4/3;
    op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
    bc = DirichletCondition[u[ζ] == 0, True];
    λ, fl = NDEigensystem[op, bc, u, ζ, 0, 1, m];


    I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for its evaluation:



    λt = Table[MathieuCharacteristicB[2 k, q], k, m];
    flt = Table[With[k = k, q = q,
    MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];


    The problem is, I do not get the expected eigenvalues!



    λ
    (* 4.0708, 17.3259, 39.1877 *)
    N[λt]
    (* 3.85298, 16.0581, 36.0254 *)


    And of course, plotting shows that the eigenequation is not satisfied at all:



    With[u = fl[[1]], b = λ[[1]],
    Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]
    With[u = flt[[1]], b = λt[[1]],
    Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]


    What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any good ideas would be welcome.










    share|improve this question











    $endgroup$














      6












      6








      6





      $begingroup$


      To be able to apply the differential equation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.



      As a test problem, I am using an algebraic version of the Mathieu equation,



      $$(1-zeta^2)w^primeprime-zeta w^prime+left(a+2q-4qzeta^2right)w=0$$



      For this example I set $q=4/3$ and take only the first three eigenpairs:



      m = 3; q = 4/3;
      op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
      bc = DirichletCondition[u[ζ] == 0, True];
      λ, fl = NDEigensystem[op, bc, u, ζ, 0, 1, m];


      I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for its evaluation:



      λt = Table[MathieuCharacteristicB[2 k, q], k, m];
      flt = Table[With[k = k, q = q,
      MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];


      The problem is, I do not get the expected eigenvalues!



      λ
      (* 4.0708, 17.3259, 39.1877 *)
      N[λt]
      (* 3.85298, 16.0581, 36.0254 *)


      And of course, plotting shows that the eigenequation is not satisfied at all:



      With[u = fl[[1]], b = λ[[1]],
      Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]
      With[u = flt[[1]], b = λt[[1]],
      Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]


      What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any good ideas would be welcome.










      share|improve this question











      $endgroup$




      To be able to apply the differential equation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.



      As a test problem, I am using an algebraic version of the Mathieu equation,



      $$(1-zeta^2)w^primeprime-zeta w^prime+left(a+2q-4qzeta^2right)w=0$$



      For this example I set $q=4/3$ and take only the first three eigenpairs:



      m = 3; q = 4/3;
      op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
      bc = DirichletCondition[u[ζ] == 0, True];
      λ, fl = NDEigensystem[op, bc, u, ζ, 0, 1, m];


      I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for its evaluation:



      λt = Table[MathieuCharacteristicB[2 k, q], k, m];
      flt = Table[With[k = k, q = q,
      MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];


      The problem is, I do not get the expected eigenvalues!



      λ
      (* 4.0708, 17.3259, 39.1877 *)
      N[λt]
      (* 3.85298, 16.0581, 36.0254 *)


      And of course, plotting shows that the eigenequation is not satisfied at all:



      With[u = fl[[1]], b = λ[[1]],
      Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]
      With[u = flt[[1]], b = λt[[1]],
      Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], ζ, 0, 1]]


      What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any good ideas would be welcome.







      differential-equations finite-element-method eigenvalues






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 24 at 14:53









      KraZug

      3,63321131




      3,63321131










      asked Apr 24 at 3:48









      宮川園子宮川園子

      311




      311




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          It looks to me like NDEigensystem is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.



          I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.



          First we install the package (only need to do this the first time):



          Needs["PacletManager`"]
          PacletInstall["CompoundMatrixMethod",
          "Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]


          Then we first need to turn the ODEs into a matrix form $mathbfy'=mathbfA cdot mathbfy$, using my function ToMatrixSystem:



          Needs["CompoundMatrixMethod`"]
          m = 3; q = 4/3;
          op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
          sys[ζend_] = ToMatrixSystem[op == a u[ζ], u[0] == 0, u[ζend] == 0, u, ζ, 0, ζend, a]


          Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_end$; this is an analytic function whose roots coincide with eigenvalues of the original equation.



          Plugging in $zeta_end = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:



          FindRoot[Evans[a, sys[1 - 10^-3]], a, 3]
          (* a -> 4.00335 *)


          Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.



          aEvans = a /. FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], a, 3, 
          WorkingPrecision -> 30] // Quiet
          (* a -> 3.85301 *)


          My package can't get the eigenfunctions directly at the moment, but you can use this eigenvalue in NDSolve (with an arbitrary second condition at $zeta=0$, set it to be 2.45446 to make it consistent with the MathieuS):



          sol = NDSolveValue[op == aEvans u[[Zeta]], u[0] == 0, u'[0] == 1,
          u, [Zeta], 0, 1 - 10^-10];
          Plot[sol[[Zeta]], flt[[1]][[Zeta]], [Zeta], 0, 1 - 10^-10]


          enter image description here



          The same should work for the other roots.






          share|improve this answer











          $endgroup$




















            6












            $begingroup$

            If you refine the mesh, you will get closer:



            m = 3; q = 4/3;
            op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
            2 q (2 [Zeta]^2 - 1) u[[Zeta]];
            bc = DirichletCondition[u[[Zeta]] == 0, True];
            [Lambda], fl =
            NDEigensystem[op, bc, u, [Zeta], 0, 1, m,
            Method -> "PDEDiscretization" -> "FiniteElement", "MeshOptions"
            -> "MaxCellMeasure" -> 0.00001];

            [Lambda]
            3.855, 16.074, 36.064

            [Lambda]t = Table[MathieuCharacteristicB[2 k, q], k, m];
            flt = Table[
            With[j = j,
            MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];

            [Lambda]t // N
            3.852, 16.058, 36.025





            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196891%2fusing-ndeigensystem-to-solve-the-mathieu-equation%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              It looks to me like NDEigensystem is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.



              I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.



              First we install the package (only need to do this the first time):



              Needs["PacletManager`"]
              PacletInstall["CompoundMatrixMethod",
              "Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]


              Then we first need to turn the ODEs into a matrix form $mathbfy'=mathbfA cdot mathbfy$, using my function ToMatrixSystem:



              Needs["CompoundMatrixMethod`"]
              m = 3; q = 4/3;
              op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
              sys[ζend_] = ToMatrixSystem[op == a u[ζ], u[0] == 0, u[ζend] == 0, u, ζ, 0, ζend, a]


              Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_end$; this is an analytic function whose roots coincide with eigenvalues of the original equation.



              Plugging in $zeta_end = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:



              FindRoot[Evans[a, sys[1 - 10^-3]], a, 3]
              (* a -> 4.00335 *)


              Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.



              aEvans = a /. FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], a, 3, 
              WorkingPrecision -> 30] // Quiet
              (* a -> 3.85301 *)


              My package can't get the eigenfunctions directly at the moment, but you can use this eigenvalue in NDSolve (with an arbitrary second condition at $zeta=0$, set it to be 2.45446 to make it consistent with the MathieuS):



              sol = NDSolveValue[op == aEvans u[[Zeta]], u[0] == 0, u'[0] == 1,
              u, [Zeta], 0, 1 - 10^-10];
              Plot[sol[[Zeta]], flt[[1]][[Zeta]], [Zeta], 0, 1 - 10^-10]


              enter image description here



              The same should work for the other roots.






              share|improve this answer











              $endgroup$

















                7












                $begingroup$

                It looks to me like NDEigensystem is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.



                I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.



                First we install the package (only need to do this the first time):



                Needs["PacletManager`"]
                PacletInstall["CompoundMatrixMethod",
                "Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]


                Then we first need to turn the ODEs into a matrix form $mathbfy'=mathbfA cdot mathbfy$, using my function ToMatrixSystem:



                Needs["CompoundMatrixMethod`"]
                m = 3; q = 4/3;
                op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
                sys[ζend_] = ToMatrixSystem[op == a u[ζ], u[0] == 0, u[ζend] == 0, u, ζ, 0, ζend, a]


                Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_end$; this is an analytic function whose roots coincide with eigenvalues of the original equation.



                Plugging in $zeta_end = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:



                FindRoot[Evans[a, sys[1 - 10^-3]], a, 3]
                (* a -> 4.00335 *)


                Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.



                aEvans = a /. FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], a, 3, 
                WorkingPrecision -> 30] // Quiet
                (* a -> 3.85301 *)


                My package can't get the eigenfunctions directly at the moment, but you can use this eigenvalue in NDSolve (with an arbitrary second condition at $zeta=0$, set it to be 2.45446 to make it consistent with the MathieuS):



                sol = NDSolveValue[op == aEvans u[[Zeta]], u[0] == 0, u'[0] == 1,
                u, [Zeta], 0, 1 - 10^-10];
                Plot[sol[[Zeta]], flt[[1]][[Zeta]], [Zeta], 0, 1 - 10^-10]


                enter image description here



                The same should work for the other roots.






                share|improve this answer











                $endgroup$















                  7












                  7








                  7





                  $begingroup$

                  It looks to me like NDEigensystem is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.



                  I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.



                  First we install the package (only need to do this the first time):



                  Needs["PacletManager`"]
                  PacletInstall["CompoundMatrixMethod",
                  "Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]


                  Then we first need to turn the ODEs into a matrix form $mathbfy'=mathbfA cdot mathbfy$, using my function ToMatrixSystem:



                  Needs["CompoundMatrixMethod`"]
                  m = 3; q = 4/3;
                  op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
                  sys[ζend_] = ToMatrixSystem[op == a u[ζ], u[0] == 0, u[ζend] == 0, u, ζ, 0, ζend, a]


                  Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_end$; this is an analytic function whose roots coincide with eigenvalues of the original equation.



                  Plugging in $zeta_end = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:



                  FindRoot[Evans[a, sys[1 - 10^-3]], a, 3]
                  (* a -> 4.00335 *)


                  Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.



                  aEvans = a /. FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], a, 3, 
                  WorkingPrecision -> 30] // Quiet
                  (* a -> 3.85301 *)


                  My package can't get the eigenfunctions directly at the moment, but you can use this eigenvalue in NDSolve (with an arbitrary second condition at $zeta=0$, set it to be 2.45446 to make it consistent with the MathieuS):



                  sol = NDSolveValue[op == aEvans u[[Zeta]], u[0] == 0, u'[0] == 1,
                  u, [Zeta], 0, 1 - 10^-10];
                  Plot[sol[[Zeta]], flt[[1]][[Zeta]], [Zeta], 0, 1 - 10^-10]


                  enter image description here



                  The same should work for the other roots.






                  share|improve this answer











                  $endgroup$



                  It looks to me like NDEigensystem is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.



                  I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.



                  First we install the package (only need to do this the first time):



                  Needs["PacletManager`"]
                  PacletInstall["CompoundMatrixMethod",
                  "Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]


                  Then we first need to turn the ODEs into a matrix form $mathbfy'=mathbfA cdot mathbfy$, using my function ToMatrixSystem:



                  Needs["CompoundMatrixMethod`"]
                  m = 3; q = 4/3;
                  op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
                  sys[ζend_] = ToMatrixSystem[op == a u[ζ], u[0] == 0, u[ζend] == 0, u, ζ, 0, ζend, a]


                  Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_end$; this is an analytic function whose roots coincide with eigenvalues of the original equation.



                  Plugging in $zeta_end = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:



                  FindRoot[Evans[a, sys[1 - 10^-3]], a, 3]
                  (* a -> 4.00335 *)


                  Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.



                  aEvans = a /. FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], a, 3, 
                  WorkingPrecision -> 30] // Quiet
                  (* a -> 3.85301 *)


                  My package can't get the eigenfunctions directly at the moment, but you can use this eigenvalue in NDSolve (with an arbitrary second condition at $zeta=0$, set it to be 2.45446 to make it consistent with the MathieuS):



                  sol = NDSolveValue[op == aEvans u[[Zeta]], u[0] == 0, u'[0] == 1,
                  u, [Zeta], 0, 1 - 10^-10];
                  Plot[sol[[Zeta]], flt[[1]][[Zeta]], [Zeta], 0, 1 - 10^-10]


                  enter image description here



                  The same should work for the other roots.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Apr 24 at 13:54

























                  answered Apr 24 at 5:40









                  KraZugKraZug

                  3,63321131




                  3,63321131





















                      6












                      $begingroup$

                      If you refine the mesh, you will get closer:



                      m = 3; q = 4/3;
                      op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
                      2 q (2 [Zeta]^2 - 1) u[[Zeta]];
                      bc = DirichletCondition[u[[Zeta]] == 0, True];
                      [Lambda], fl =
                      NDEigensystem[op, bc, u, [Zeta], 0, 1, m,
                      Method -> "PDEDiscretization" -> "FiniteElement", "MeshOptions"
                      -> "MaxCellMeasure" -> 0.00001];

                      [Lambda]
                      3.855, 16.074, 36.064

                      [Lambda]t = Table[MathieuCharacteristicB[2 k, q], k, m];
                      flt = Table[
                      With[j = j,
                      MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];

                      [Lambda]t // N
                      3.852, 16.058, 36.025





                      share|improve this answer









                      $endgroup$

















                        6












                        $begingroup$

                        If you refine the mesh, you will get closer:



                        m = 3; q = 4/3;
                        op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
                        2 q (2 [Zeta]^2 - 1) u[[Zeta]];
                        bc = DirichletCondition[u[[Zeta]] == 0, True];
                        [Lambda], fl =
                        NDEigensystem[op, bc, u, [Zeta], 0, 1, m,
                        Method -> "PDEDiscretization" -> "FiniteElement", "MeshOptions"
                        -> "MaxCellMeasure" -> 0.00001];

                        [Lambda]
                        3.855, 16.074, 36.064

                        [Lambda]t = Table[MathieuCharacteristicB[2 k, q], k, m];
                        flt = Table[
                        With[j = j,
                        MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];

                        [Lambda]t // N
                        3.852, 16.058, 36.025





                        share|improve this answer









                        $endgroup$















                          6












                          6








                          6





                          $begingroup$

                          If you refine the mesh, you will get closer:



                          m = 3; q = 4/3;
                          op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
                          2 q (2 [Zeta]^2 - 1) u[[Zeta]];
                          bc = DirichletCondition[u[[Zeta]] == 0, True];
                          [Lambda], fl =
                          NDEigensystem[op, bc, u, [Zeta], 0, 1, m,
                          Method -> "PDEDiscretization" -> "FiniteElement", "MeshOptions"
                          -> "MaxCellMeasure" -> 0.00001];

                          [Lambda]
                          3.855, 16.074, 36.064

                          [Lambda]t = Table[MathieuCharacteristicB[2 k, q], k, m];
                          flt = Table[
                          With[j = j,
                          MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];

                          [Lambda]t // N
                          3.852, 16.058, 36.025





                          share|improve this answer









                          $endgroup$



                          If you refine the mesh, you will get closer:



                          m = 3; q = 4/3;
                          op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
                          2 q (2 [Zeta]^2 - 1) u[[Zeta]];
                          bc = DirichletCondition[u[[Zeta]] == 0, True];
                          [Lambda], fl =
                          NDEigensystem[op, bc, u, [Zeta], 0, 1, m,
                          Method -> "PDEDiscretization" -> "FiniteElement", "MeshOptions"
                          -> "MaxCellMeasure" -> 0.00001];

                          [Lambda]
                          3.855, 16.074, 36.064

                          [Lambda]t = Table[MathieuCharacteristicB[2 k, q], k, m];
                          flt = Table[
                          With[j = j,
                          MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], k, m];

                          [Lambda]t // N
                          3.852, 16.058, 36.025






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Apr 24 at 5:22









                          user21user21

                          21.4k561101




                          21.4k561101



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196891%2fusing-ndeigensystem-to-solve-the-mathieu-equation%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020