Trigonometric and Exponential Integrationpositive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?

Can Infinity Stones be retrieved more than once?

Why do money exchangers give different rates to different bills?

Shantae Dance Matching

Purpose of のは in this sentence?

What does this colon mean? It is not labeling, it is not ternary operator

Why doesn't WotC use established keywords on all new cards?

I'm in your subnets, golfing your code

Using a microphone from the 1930s

Set collection doesn't always enforce uniqueness with the Date datatype? Does the following example seem correct?

Why wasn't the Night King naked in S08E03?

How important is people skills in academic career and applications?

How long would it take for people to notice a mass disappearance?

How wide is a neg symbol, how to get the width for alignment?

Point of the the Dothraki's attack in GoT S8E3?

Why do only some White Walkers shatter into ice chips?

I need a disease

How can I close a gap between my fence and my neighbor's that's on his side of the property line?

Position of past participle and extent of the Verbklammer

Hyperlink on red background

Manager is threatening to grade me poorly if I don't complete the project

Have I damaged my car by attempting to reverse with hand/park brake up?

Verb "geeitet" in an old scientific text

What was the first instance of a "planet eater" in sci-fi?

If stationary points and minima are equivalent, then the function is convex?



Trigonometric and Exponential Integration


positive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?













6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59













6












6








6


1



$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$





If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks







definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 24 at 6:51









DXTDXT

5,9792733




5,9792733











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59
















  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59




$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59










2 Answers
2






active

oldest

votes


















7












$begingroup$

As you say,



$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$



I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*

Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$

with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*

In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$






share|cite|improve this answer











$endgroup$








  • 3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50







  • 1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00


















4












$begingroup$

For brevity we set



$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$



Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00















    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00













    7












    7








    7





    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$



    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 24 at 11:00

























    answered Apr 24 at 9:06









    Bennett GardinerBennett Gardiner

    3,16211540




    3,16211540







    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00












    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00







    3




    3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    1




    1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00











    4












    $begingroup$

    For brevity we set



    $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
    $$F_c,s(x):=int f_c,s(x),dx.$$



    Then by parts, integrating on $e^-x$,
    $$F_c,0=-f_c,0-cF_c-1,1$$
    and
    $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



    Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



    $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      For brevity we set



      $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
      $$F_c,s(x):=int f_c,s(x),dx.$$



      Then by parts, integrating on $e^-x$,
      $$F_c,0=-f_c,0-cF_c-1,1$$
      and
      $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



      Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



      $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






        share|cite|improve this answer











        $endgroup$



        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 24 at 12:56

























        answered Apr 24 at 9:57









        Yves DaoustYves Daoust

        135k676233




        135k676233



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020