Trigonometric and Exponential Integrationpositive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?

Can Infinity Stones be retrieved more than once?

Why do money exchangers give different rates to different bills?

Shantae Dance Matching

Purpose of のは in this sentence?

What does this colon mean? It is not labeling, it is not ternary operator

Why doesn't WotC use established keywords on all new cards?

I'm in your subnets, golfing your code

Using a microphone from the 1930s

Set collection doesn't always enforce uniqueness with the Date datatype? Does the following example seem correct?

Why wasn't the Night King naked in S08E03?

How important is people skills in academic career and applications?

How long would it take for people to notice a mass disappearance?

How wide is a neg symbol, how to get the width for alignment?

Point of the the Dothraki's attack in GoT S8E3?

Why do only some White Walkers shatter into ice chips?

I need a disease

How can I close a gap between my fence and my neighbor's that's on his side of the property line?

Position of past participle and extent of the Verbklammer

Hyperlink on red background

Manager is threatening to grade me poorly if I don't complete the project

Have I damaged my car by attempting to reverse with hand/park brake up?

Verb "geeitet" in an old scientific text

What was the first instance of a "planet eater" in sci-fi?

If stationary points and minima are equivalent, then the function is convex?



Trigonometric and Exponential Integration


positive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?













6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59













6












6








6


1



$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$





If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks







definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 24 at 6:51









DXTDXT

5,9792733




5,9792733











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59
















  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59




$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59










2 Answers
2






active

oldest

votes


















7












$begingroup$

As you say,



$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$



I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*

Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$

with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*

In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$






share|cite|improve this answer











$endgroup$








  • 3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50







  • 1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00


















4












$begingroup$

For brevity we set



$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$



Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00















    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00













    7












    7








    7





    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$



    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 24 at 11:00

























    answered Apr 24 at 9:06









    Bennett GardinerBennett Gardiner

    3,16211540




    3,16211540







    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00












    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00







    3




    3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    1




    1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00











    4












    $begingroup$

    For brevity we set



    $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
    $$F_c,s(x):=int f_c,s(x),dx.$$



    Then by parts, integrating on $e^-x$,
    $$F_c,0=-f_c,0-cF_c-1,1$$
    and
    $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



    Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



    $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      For brevity we set



      $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
      $$F_c,s(x):=int f_c,s(x),dx.$$



      Then by parts, integrating on $e^-x$,
      $$F_c,0=-f_c,0-cF_c-1,1$$
      and
      $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



      Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



      $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






        share|cite|improve this answer











        $endgroup$



        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 24 at 12:56

























        answered Apr 24 at 9:57









        Yves DaoustYves Daoust

        135k676233




        135k676233



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

            Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

            What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company