Trigonometric and Exponential Integrationpositive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?

Multi tool use
Multi tool use

Can Infinity Stones be retrieved more than once?

Why do money exchangers give different rates to different bills?

Shantae Dance Matching

Purpose of のは in this sentence?

What does this colon mean? It is not labeling, it is not ternary operator

Why doesn't WotC use established keywords on all new cards?

I'm in your subnets, golfing your code

Using a microphone from the 1930s

Set collection doesn't always enforce uniqueness with the Date datatype? Does the following example seem correct?

Why wasn't the Night King naked in S08E03?

How important is people skills in academic career and applications?

How long would it take for people to notice a mass disappearance?

How wide is a neg symbol, how to get the width for alignment?

Point of the the Dothraki's attack in GoT S8E3?

Why do only some White Walkers shatter into ice chips?

I need a disease

How can I close a gap between my fence and my neighbor's that's on his side of the property line?

Position of past participle and extent of the Verbklammer

Hyperlink on red background

Manager is threatening to grade me poorly if I don't complete the project

Have I damaged my car by attempting to reverse with hand/park brake up?

Verb "geeitet" in an old scientific text

What was the first instance of a "planet eater" in sci-fi?

If stationary points and minima are equivalent, then the function is convex?



Trigonometric and Exponential Integration


positive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?













6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















6












$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59













6












6








6


1



$begingroup$



If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$





If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is




Try: using by parts



$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$



$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$



Could some help me to solve it, Thanks







definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 24 at 6:51









DXTDXT

5,9792733




5,9792733











  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59
















  • $begingroup$
    Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
    $endgroup$
    – lab bhattacharjee
    Apr 24 at 6:59















$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59




$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59










2 Answers
2






active

oldest

votes


















7












$begingroup$

As you say,



$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$



I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*

Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$

with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*

In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$






share|cite|improve this answer











$endgroup$








  • 3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50







  • 1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00


















4












$begingroup$

For brevity we set



$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$



Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00















    7












    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00













    7












    7








    7





    $begingroup$

    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$






    share|cite|improve this answer











    $endgroup$



    As you say,



    $$
    fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    beginalign*
    fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
    & = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
    & = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
    & = n cos^n(x) - (n-1) cos^n-2(x).
    endalign*

    Then the whole integral becomes
    $$
    fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
    $$

    with the red term being zero, we obtain
    beginalign*
    fracI_nn &= -nI_n + (n-1)I_n-2, \
    I_n & = - n^2 I_n + n(n-1)I_n-2, \
    (n^2 + 1)I_n &= n(n-1)I_n-2, \
    fracI_nI_n-2 &= fracn(n-1)n^2+1, \
    endalign*

    In particular,
    $$
    fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 24 at 11:00

























    answered Apr 24 at 9:06









    Bennett GardinerBennett Gardiner

    3,16211540




    3,16211540







    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00












    • 3




      $begingroup$
      No, the result is $dfrac40703064072325$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      Apr 24 at 10:50







    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      Apr 24 at 11:00







    3




    3




    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    $begingroup$
    No, the result is $dfrac40703064072325$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    Apr 24 at 10:50





    1




    1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    Apr 24 at 11:00











    4












    $begingroup$

    For brevity we set



    $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
    $$F_c,s(x):=int f_c,s(x),dx.$$



    Then by parts, integrating on $e^-x$,
    $$F_c,0=-f_c,0-cF_c-1,1$$
    and
    $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



    Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



    $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      For brevity we set



      $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
      $$F_c,s(x):=int f_c,s(x),dx.$$



      Then by parts, integrating on $e^-x$,
      $$F_c,0=-f_c,0-cF_c-1,1$$
      and
      $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



      Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



      $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$






        share|cite|improve this answer











        $endgroup$



        For brevity we set



        $$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
        $$F_c,s(x):=int f_c,s(x),dx.$$



        Then by parts, integrating on $e^-x$,
        $$F_c,0=-f_c,0-cF_c-1,1$$
        and
        $$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 24 at 12:56

























        answered Apr 24 at 9:57









        Yves DaoustYves Daoust

        135k676233




        135k676233



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            ZlOKw,fmB2222N9KIm 7f
            f4o aZpCElTk63STp,opT

            Popular posts from this blog

            RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020