Trigonometric and Exponential Integrationpositive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?
Can Infinity Stones be retrieved more than once?
Why do money exchangers give different rates to different bills?
Shantae Dance Matching
Purpose of のは in this sentence?
What does this colon mean? It is not labeling, it is not ternary operator
Why doesn't WotC use established keywords on all new cards?
I'm in your subnets, golfing your code
Using a microphone from the 1930s
Set collection doesn't always enforce uniqueness with the Date datatype? Does the following example seem correct?
Why wasn't the Night King naked in S08E03?
How important is people skills in academic career and applications?
How long would it take for people to notice a mass disappearance?
How wide is a neg symbol, how to get the width for alignment?
Point of the the Dothraki's attack in GoT S8E3?
Why do only some White Walkers shatter into ice chips?
I need a disease
How can I close a gap between my fence and my neighbor's that's on his side of the property line?
Position of past participle and extent of the Verbklammer
Hyperlink on red background
Manager is threatening to grade me poorly if I don't complete the project
Have I damaged my car by attempting to reverse with hand/park brake up?
Verb "geeitet" in an old scientific text
What was the first instance of a "planet eater" in sci-fi?
If stationary points and minima are equivalent, then the function is convex?
Trigonometric and Exponential Integration
positive integer $n$ in definite integrationFinding $sum^infty_n=1int^2(n+1)pi_2npifracxsin x+cos xx^2$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^1_-1fracx^3sqrt1-x^2lnbigg(frac1+x1-xbigg)dx$Finding $int^pi_0sin(8x+8sin 3x)dx$If $int^infty_0fracln^2(x)(1-x)^2dx+kint^1_0fracln(1-x)xdx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^-1$ if $P=int^pi_0fracsin(994 x)sin xsin(1332x),dx$ and $Q=int^1_0fracx^338(x^1988-1)x^2-1,dx$?
$begingroup$
If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is
Try: using by parts
$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$
$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
add a comment |
$begingroup$
If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is
Try: using by parts
$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$
$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59
add a comment |
$begingroup$
If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is
Try: using by parts
$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$
$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
If $displaystyle I_n =int^infty_fracpi2e^-xcos^n(x)dx.$ Then $displaystyle fracI_2018I_2016$ is
Try: using by parts
$$I_n=int^infty_fracpi2e^-xcos^n(x)dx$$
$$I_n=-cos^n(x)cdot e^-xbigg|^infty_fracpi2-nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
$$I_n=nint^infty_fracpi2cos^n-1(x)sin(x)cdot e^-xdx$$
Could some help me to solve it, Thanks
definite-integrals
definite-integrals
asked Apr 24 at 6:51
DXTDXT
5,9792733
5,9792733
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59
add a comment |
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As you say,
$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*
Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$
with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*
In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$
$endgroup$
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
add a comment |
$begingroup$
For brevity we set
$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$
Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you say,
$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*
Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$
with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*
In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$
$endgroup$
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
add a comment |
$begingroup$
As you say,
$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*
Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$
with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*
In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$
$endgroup$
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
add a comment |
$begingroup$
As you say,
$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*
Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$
with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*
In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$
$endgroup$
As you say,
$$
fracI_nn = - int_pi/2^infty mathrme^-x cos^n-1(x)sin(x) mathrmdx
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
beginalign*
fracmathrmd mathrmd x , cos^n-1(x)sin(x) &= cos^n(x) - (n-1)cos^n-2(x)colorbluesin^2(x) \
& = cos^n(x) - (n-1)cos^n-2(x)left[colorblue1-cos^2(x)right] \
& = colorredcos^n(x) - (n-1) cos^n-2(x) + (ncolorred-1)cos^n(x) \
& = n cos^n(x) - (n-1) cos^n-2(x).
endalign*
Then the whole integral becomes
$$
fracI_nn = - displaystyle colorredleft[ -mathrme^-x cos^n-1(x)sin(x)right]^infty_pi/2 - int_pi/2^infty mathrme^-x left[ n cos^n(x) - (n-1) cos^n-2(x)right] mathrmdx
$$
with the red term being zero, we obtain
beginalign*
fracI_nn &= -nI_n + (n-1)I_n-2, \
I_n & = - n^2 I_n + n(n-1)I_n-2, \
(n^2 + 1)I_n &= n(n-1)I_n-2, \
fracI_nI_n-2 &= fracn(n-1)n^2+1, \
endalign*
In particular,
$$
fracI_2018I_2016 = frac2018 times 20172018^2+1 = frac40703064072325.
$$
edited Apr 24 at 11:00
answered Apr 24 at 9:06
Bennett GardinerBennett Gardiner
3,16211540
3,16211540
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
add a comment |
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
3
3
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
$begingroup$
No, the result is $dfrac40703064072325$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
Apr 24 at 10:50
1
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
Apr 24 at 11:00
add a comment |
$begingroup$
For brevity we set
$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$
Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$
$endgroup$
add a comment |
$begingroup$
For brevity we set
$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$
Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$
$endgroup$
add a comment |
$begingroup$
For brevity we set
$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$
Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$
$endgroup$
For brevity we set
$$f_c,s(x):= e^-xcos^c(x)sin^s(x),$$
$$F_c,s(x):=int f_c,s(x),dx.$$
Then by parts, integrating on $e^-x$,
$$F_c,0=-f_c,0-cF_c-1,1$$
and
$$F_c-1,1=-f_c-1,1-(c-1)F_c-2,2+F_c,0.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_c-2,2=F_c-2,0-F_c,0$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_c,0=c(c-1)F_c-2,0.$$
edited Apr 24 at 12:56
answered Apr 24 at 9:57
Yves DaoustYves Daoust
135k676233
135k676233
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Integrate both sides of $$dfracd(e^-xcos^mxsin x)dx$$
$endgroup$
– lab bhattacharjee
Apr 24 at 6:59