If stationary points and minima are equivalent, then is the function convex?Counterexample to show that the set of global minima of a function $f$ is a strict subset of the set of minima of the convex envelope of $f$Is every monotone map the gradient of a convex function?A convex function is differentiable at all but countably many pointsAre the stationary points of a strongly convex function unique in each dimension?Strictly increasing, strictly convex function: is the second derivative positive?What does it mean for the Hessian of a convex function to be positive semidefinite?Question on equivalent definitions of a convex functionGeneralization of properties of the subgradient of a convex function $f$Showing a function is convex by looking at the hessian.How to show two different definitions of $alpha$-strongly convex are equivalent?

Why can't RGB or bicolour LEDs produce a decent yellow?

Why in a Ethernet LAN, a packet sniffer can obtain all packets sent over the LAN?

How to slow yourself down (for playing nice with others)

Why was castling bad for white in this game, and engine strongly prefered trading queens?

How to select certain lines (n, n+4, n+8, n+12...) from the file?

Exception propagation: When should I catch exceptions?

use the oversamplling followed by '' decimation method ''to increasee the ADC resolution and not normal averaging

Run script for 10 times until meets the condition, but break the loop if it meets the condition during iteration

What does a comma mean inside an 'if' statement?

Why doesn't Rocket Lab use a solid stage?

How to Access data returned from Apex class in JS controller using Lightning web component

How did Thanos not realise this had happened at the end of Endgame?

How can this triangle figure be modeled/drawn with TikZ?

What is Plautus’s pun about frustum and frustrum?

How does Howard Stark know this?

What are the implications of the new alleged key recovery attack preprint on SIMON?

Can 'sudo apt-get remove [write]' destroy my Ubuntu?

Size of a folder with du

51% attack - apparently very easy? refering to CZ's "rollback btc chain" - How to make sure such corruptible scenario can never happen so easily?

Why was the Ancient One so hesitant to teach Dr. Strange the art of sorcery?

Why was Thor doubtful about his worthiness to Mjolnir?

Does Lawful Interception of 4G / the proposed 5G provide a back door for hackers as well?

When a land becomes a creature, is it untapped?

Was this character’s old age look CGI or make-up?



If stationary points and minima are equivalent, then is the function convex?


Counterexample to show that the set of global minima of a function $f$ is a strict subset of the set of minima of the convex envelope of $f$Is every monotone map the gradient of a convex function?A convex function is differentiable at all but countably many pointsAre the stationary points of a strongly convex function unique in each dimension?Strictly increasing, strictly convex function: is the second derivative positive?What does it mean for the Hessian of a convex function to be positive semidefinite?Question on equivalent definitions of a convex functionGeneralization of properties of the subgradient of a convex function $f$Showing a function is convex by looking at the hessian.How to show two different definitions of $alpha$-strongly convex are equivalent?













4












$begingroup$


Let $f : mathbb R^n to mathbb R$ be a differentiable function for which a minimum exists. If $f$ is convex, then



$$x in mathbb R^n : nabla f(x) = 0 = x in mathbb R^n : f(x) leq f(y), ; forall y in mathbb R^n.$$



However, is the converse statement true? That is, if the above equation holds (and the two sets are non-empty), then is $f$ necessarily convex? Furthermore, would compactness of these sets be relevant?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
    $endgroup$
    – Andreas Blass
    May 2 at 1:28










  • $begingroup$
    @AndreasBlass Thank you for the observation. I edited the question.
    $endgroup$
    – Justin Le
    May 2 at 1:33






  • 1




    $begingroup$
    To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
    $endgroup$
    – Andreas Blass
    May 2 at 1:42






  • 1




    $begingroup$
    This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
    $endgroup$
    – Theo Bendit
    May 2 at 2:29















4












$begingroup$


Let $f : mathbb R^n to mathbb R$ be a differentiable function for which a minimum exists. If $f$ is convex, then



$$x in mathbb R^n : nabla f(x) = 0 = x in mathbb R^n : f(x) leq f(y), ; forall y in mathbb R^n.$$



However, is the converse statement true? That is, if the above equation holds (and the two sets are non-empty), then is $f$ necessarily convex? Furthermore, would compactness of these sets be relevant?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
    $endgroup$
    – Andreas Blass
    May 2 at 1:28










  • $begingroup$
    @AndreasBlass Thank you for the observation. I edited the question.
    $endgroup$
    – Justin Le
    May 2 at 1:33






  • 1




    $begingroup$
    To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
    $endgroup$
    – Andreas Blass
    May 2 at 1:42






  • 1




    $begingroup$
    This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
    $endgroup$
    – Theo Bendit
    May 2 at 2:29













4












4








4


1



$begingroup$


Let $f : mathbb R^n to mathbb R$ be a differentiable function for which a minimum exists. If $f$ is convex, then



$$x in mathbb R^n : nabla f(x) = 0 = x in mathbb R^n : f(x) leq f(y), ; forall y in mathbb R^n.$$



However, is the converse statement true? That is, if the above equation holds (and the two sets are non-empty), then is $f$ necessarily convex? Furthermore, would compactness of these sets be relevant?










share|cite|improve this question











$endgroup$




Let $f : mathbb R^n to mathbb R$ be a differentiable function for which a minimum exists. If $f$ is convex, then



$$x in mathbb R^n : nabla f(x) = 0 = x in mathbb R^n : f(x) leq f(y), ; forall y in mathbb R^n.$$



However, is the converse statement true? That is, if the above equation holds (and the two sets are non-empty), then is $f$ necessarily convex? Furthermore, would compactness of these sets be relevant?







convex-analysis convex-optimization maxima-minima






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 3 at 7:19









Rodrigo de Azevedo

13.3k41964




13.3k41964










asked May 2 at 0:53









Justin LeJustin Le

1378




1378







  • 2




    $begingroup$
    Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
    $endgroup$
    – Andreas Blass
    May 2 at 1:28










  • $begingroup$
    @AndreasBlass Thank you for the observation. I edited the question.
    $endgroup$
    – Justin Le
    May 2 at 1:33






  • 1




    $begingroup$
    To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
    $endgroup$
    – Andreas Blass
    May 2 at 1:42






  • 1




    $begingroup$
    This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
    $endgroup$
    – Theo Bendit
    May 2 at 2:29












  • 2




    $begingroup$
    Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
    $endgroup$
    – Andreas Blass
    May 2 at 1:28










  • $begingroup$
    @AndreasBlass Thank you for the observation. I edited the question.
    $endgroup$
    – Justin Le
    May 2 at 1:33






  • 1




    $begingroup$
    To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
    $endgroup$
    – Andreas Blass
    May 2 at 1:42






  • 1




    $begingroup$
    This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
    $endgroup$
    – Theo Bendit
    May 2 at 2:29







2




2




$begingroup$
Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
$endgroup$
– Andreas Blass
May 2 at 1:28




$begingroup$
Take $n=1$ and $f(x)=-e^x$. The sets in your question are equal because both are empty.
$endgroup$
– Andreas Blass
May 2 at 1:28












$begingroup$
@AndreasBlass Thank you for the observation. I edited the question.
$endgroup$
– Justin Le
May 2 at 1:33




$begingroup$
@AndreasBlass Thank you for the observation. I edited the question.
$endgroup$
– Justin Le
May 2 at 1:33




1




1




$begingroup$
To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
$endgroup$
– Andreas Blass
May 2 at 1:42




$begingroup$
To get the sets nonempty, try letting (still with $n=1$) $f(x)=x^2-1$ for $xleq1$ and $f(x)=2ln x$ for $xgeq 1$. (I hope I did the arithmetic right so that the values and derivatives match up at $x=1$ which makes $f$ differentiable. With more work, you could make an infinitely differentiable $f$ with the same general shape.) Both sets in your question are $0$, so they're equal, nonempty, and compact. But $f$ isn't convex to the right of $x=1$.
$endgroup$
– Andreas Blass
May 2 at 1:42




1




1




$begingroup$
This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
$endgroup$
– Theo Bendit
May 2 at 2:29




$begingroup$
This question reminds me of a paper by Saint Raymond. He shows that that in a general Banach space $X$, a lower-semicontinuous function $f$ is convex if, given any $l in X^*$, the function $f + l$ achieves its minimum on a non-empty, convex set.
$endgroup$
– Theo Bendit
May 2 at 2:29










1 Answer
1






active

oldest

votes


















9












$begingroup$

No, the converse is not correct. Here is a counterexample:



nonconvex counter-example



This function is smooth, nonconvex, yet it has a unique global minimiser which satisfies Fermat's condition.



By the way, a convex function does not necessarily satisfy the condition you mentioned - you need additional conditions. Take for example $f(x) = e^x$.



If a (convex or nonconvex) function $f:mathbbR^ntomathbbR$ is lower semicontinuous and level bounded, then $inf f$ is finite and its set of minimisers is nonempty and compact. A function $f$ is said to be level bounded if its level sets (the sets $xinmathbbR^n: f(x) leq a$) are bounded for every $ain mathbbR$ (they might be empty for some $a$).



Update: Another counter-example is the following function



$$
f(x) = fracxe^-2x + 1
$$



Its graph looks a little like the one above.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3210392%2fif-stationary-points-and-minima-are-equivalent-then-is-the-function-convex%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    9












    $begingroup$

    No, the converse is not correct. Here is a counterexample:



    nonconvex counter-example



    This function is smooth, nonconvex, yet it has a unique global minimiser which satisfies Fermat's condition.



    By the way, a convex function does not necessarily satisfy the condition you mentioned - you need additional conditions. Take for example $f(x) = e^x$.



    If a (convex or nonconvex) function $f:mathbbR^ntomathbbR$ is lower semicontinuous and level bounded, then $inf f$ is finite and its set of minimisers is nonempty and compact. A function $f$ is said to be level bounded if its level sets (the sets $xinmathbbR^n: f(x) leq a$) are bounded for every $ain mathbbR$ (they might be empty for some $a$).



    Update: Another counter-example is the following function



    $$
    f(x) = fracxe^-2x + 1
    $$



    Its graph looks a little like the one above.






    share|cite|improve this answer











    $endgroup$

















      9












      $begingroup$

      No, the converse is not correct. Here is a counterexample:



      nonconvex counter-example



      This function is smooth, nonconvex, yet it has a unique global minimiser which satisfies Fermat's condition.



      By the way, a convex function does not necessarily satisfy the condition you mentioned - you need additional conditions. Take for example $f(x) = e^x$.



      If a (convex or nonconvex) function $f:mathbbR^ntomathbbR$ is lower semicontinuous and level bounded, then $inf f$ is finite and its set of minimisers is nonempty and compact. A function $f$ is said to be level bounded if its level sets (the sets $xinmathbbR^n: f(x) leq a$) are bounded for every $ain mathbbR$ (they might be empty for some $a$).



      Update: Another counter-example is the following function



      $$
      f(x) = fracxe^-2x + 1
      $$



      Its graph looks a little like the one above.






      share|cite|improve this answer











      $endgroup$















        9












        9








        9





        $begingroup$

        No, the converse is not correct. Here is a counterexample:



        nonconvex counter-example



        This function is smooth, nonconvex, yet it has a unique global minimiser which satisfies Fermat's condition.



        By the way, a convex function does not necessarily satisfy the condition you mentioned - you need additional conditions. Take for example $f(x) = e^x$.



        If a (convex or nonconvex) function $f:mathbbR^ntomathbbR$ is lower semicontinuous and level bounded, then $inf f$ is finite and its set of minimisers is nonempty and compact. A function $f$ is said to be level bounded if its level sets (the sets $xinmathbbR^n: f(x) leq a$) are bounded for every $ain mathbbR$ (they might be empty for some $a$).



        Update: Another counter-example is the following function



        $$
        f(x) = fracxe^-2x + 1
        $$



        Its graph looks a little like the one above.






        share|cite|improve this answer











        $endgroup$



        No, the converse is not correct. Here is a counterexample:



        nonconvex counter-example



        This function is smooth, nonconvex, yet it has a unique global minimiser which satisfies Fermat's condition.



        By the way, a convex function does not necessarily satisfy the condition you mentioned - you need additional conditions. Take for example $f(x) = e^x$.



        If a (convex or nonconvex) function $f:mathbbR^ntomathbbR$ is lower semicontinuous and level bounded, then $inf f$ is finite and its set of minimisers is nonempty and compact. A function $f$ is said to be level bounded if its level sets (the sets $xinmathbbR^n: f(x) leq a$) are bounded for every $ain mathbbR$ (they might be empty for some $a$).



        Update: Another counter-example is the following function



        $$
        f(x) = fracxe^-2x + 1
        $$



        Its graph looks a little like the one above.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited May 2 at 2:01

























        answered May 2 at 1:37









        Pantelis SopasakisPantelis Sopasakis

        2,5221040




        2,5221040



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3210392%2fif-stationary-points-and-minima-are-equivalent-then-is-the-function-convex%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020