Uniform boundedness of the number of number fields having fixed discriminantDensity of monogenic number fields?Orders in number fieldsConstructing quintic number fields with certain splitting behaviourNumber of polynomials whose Galois group is a subgroup of the alternating groupA class number in a family of number fieldsRecognizing the Galois group from the field discriminantDoes there always exist a non-rational algebraic integer in a number field whose discriminant divides its norm?Number fields ordered by discriminantField of minimum discriminant of a given degreeHow small may the discriminant of an $S_d$-field be?

Uniform boundedness of the number of number fields having fixed discriminant


Density of monogenic number fields?Orders in number fieldsConstructing quintic number fields with certain splitting behaviourNumber of polynomials whose Galois group is a subgroup of the alternating groupA class number in a family of number fieldsRecognizing the Galois group from the field discriminantDoes there always exist a non-rational algebraic integer in a number field whose discriminant divides its norm?Number fields ordered by discriminantField of minimum discriminant of a given degreeHow small may the discriminant of an $S_d$-field be?













3












$begingroup$


Let $d$ be an integer. It is a well-known theorem, attributed to Hermite and Minkowski, which asserts that the number of number fields $K$, allowed to have any degree over $mathbbQ$, having discriminant $Delta_K = d$ is finite.



Let $S(d)$ be the number of isomorphism classes of number fields of discriminant $d$. The Hermite-Minkowski theorem is the assertion that $S(d) < infty$ for all $d in mathbbZ$. Is $S(d)$ uniformly bounded? That is, does there exist a positive integer $N$ such that $S(d) leq N$ for all $d in mathbbZ$?



We can refine the question and instead only count (isomorphism classes of) number fields of fixed degree over $mathbbQ$. Let $S_n(d)$ be the number of isomorphism classes of number fields of discriminant equal to $d$ and degree equal to $n$. Does there exist a number $N(n)$ such that $S_n(d) leq N(n)$ for all $d in mathbbZ$?



Observe that the answer is yes for $n = 2$. Indeed we find that $S_2(d) leq 1$ for all $d in mathbbZ$, with equality if and only if $d$ is a fundamental discriminant.










share|cite|improve this question









$endgroup$











  • $begingroup$
    For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
    $endgroup$
    – François Brunault
    May 2 at 17:46
















3












$begingroup$


Let $d$ be an integer. It is a well-known theorem, attributed to Hermite and Minkowski, which asserts that the number of number fields $K$, allowed to have any degree over $mathbbQ$, having discriminant $Delta_K = d$ is finite.



Let $S(d)$ be the number of isomorphism classes of number fields of discriminant $d$. The Hermite-Minkowski theorem is the assertion that $S(d) < infty$ for all $d in mathbbZ$. Is $S(d)$ uniformly bounded? That is, does there exist a positive integer $N$ such that $S(d) leq N$ for all $d in mathbbZ$?



We can refine the question and instead only count (isomorphism classes of) number fields of fixed degree over $mathbbQ$. Let $S_n(d)$ be the number of isomorphism classes of number fields of discriminant equal to $d$ and degree equal to $n$. Does there exist a number $N(n)$ such that $S_n(d) leq N(n)$ for all $d in mathbbZ$?



Observe that the answer is yes for $n = 2$. Indeed we find that $S_2(d) leq 1$ for all $d in mathbbZ$, with equality if and only if $d$ is a fundamental discriminant.










share|cite|improve this question









$endgroup$











  • $begingroup$
    For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
    $endgroup$
    – François Brunault
    May 2 at 17:46














3












3








3


1



$begingroup$


Let $d$ be an integer. It is a well-known theorem, attributed to Hermite and Minkowski, which asserts that the number of number fields $K$, allowed to have any degree over $mathbbQ$, having discriminant $Delta_K = d$ is finite.



Let $S(d)$ be the number of isomorphism classes of number fields of discriminant $d$. The Hermite-Minkowski theorem is the assertion that $S(d) < infty$ for all $d in mathbbZ$. Is $S(d)$ uniformly bounded? That is, does there exist a positive integer $N$ such that $S(d) leq N$ for all $d in mathbbZ$?



We can refine the question and instead only count (isomorphism classes of) number fields of fixed degree over $mathbbQ$. Let $S_n(d)$ be the number of isomorphism classes of number fields of discriminant equal to $d$ and degree equal to $n$. Does there exist a number $N(n)$ such that $S_n(d) leq N(n)$ for all $d in mathbbZ$?



Observe that the answer is yes for $n = 2$. Indeed we find that $S_2(d) leq 1$ for all $d in mathbbZ$, with equality if and only if $d$ is a fundamental discriminant.










share|cite|improve this question









$endgroup$




Let $d$ be an integer. It is a well-known theorem, attributed to Hermite and Minkowski, which asserts that the number of number fields $K$, allowed to have any degree over $mathbbQ$, having discriminant $Delta_K = d$ is finite.



Let $S(d)$ be the number of isomorphism classes of number fields of discriminant $d$. The Hermite-Minkowski theorem is the assertion that $S(d) < infty$ for all $d in mathbbZ$. Is $S(d)$ uniformly bounded? That is, does there exist a positive integer $N$ such that $S(d) leq N$ for all $d in mathbbZ$?



We can refine the question and instead only count (isomorphism classes of) number fields of fixed degree over $mathbbQ$. Let $S_n(d)$ be the number of isomorphism classes of number fields of discriminant equal to $d$ and degree equal to $n$. Does there exist a number $N(n)$ such that $S_n(d) leq N(n)$ for all $d in mathbbZ$?



Observe that the answer is yes for $n = 2$. Indeed we find that $S_2(d) leq 1$ for all $d in mathbbZ$, with equality if and only if $d$ is a fundamental discriminant.







nt.number-theory algebraic-number-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 2 at 17:05









Stanley Yao XiaoStanley Yao Xiao

8,72642787




8,72642787











  • $begingroup$
    For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
    $endgroup$
    – François Brunault
    May 2 at 17:46

















  • $begingroup$
    For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
    $endgroup$
    – François Brunault
    May 2 at 17:46
















$begingroup$
For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
$endgroup$
– François Brunault
May 2 at 17:46





$begingroup$
For the first question, the answer seems to be no: algebra.at/multi.htm For the second, if this was known then we would get a linear bound on the number of number fields of fixed degree $n$ and discriminant $<X$ which I think is a conjecture even for low values of $n$.
$endgroup$
– François Brunault
May 2 at 17:46











1 Answer
1






active

oldest

votes


















7












$begingroup$

The answers to both questions is no. For instance for $n=3$, if $p_1$,... $p_k$
are primes congruent to $1$ modulo $3$ there exist $(3^k-1)/2$ cyclic cubic fields
of discriminant equal to $(p_1...p_k)^2$ by elementary class field theory.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Great, thanks for the example!
    $endgroup$
    – Stanley Yao Xiao
    May 3 at 6:54











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330552%2funiform-boundedness-of-the-number-of-number-fields-having-fixed-discriminant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

The answers to both questions is no. For instance for $n=3$, if $p_1$,... $p_k$
are primes congruent to $1$ modulo $3$ there exist $(3^k-1)/2$ cyclic cubic fields
of discriminant equal to $(p_1...p_k)^2$ by elementary class field theory.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Great, thanks for the example!
    $endgroup$
    – Stanley Yao Xiao
    May 3 at 6:54















7












$begingroup$

The answers to both questions is no. For instance for $n=3$, if $p_1$,... $p_k$
are primes congruent to $1$ modulo $3$ there exist $(3^k-1)/2$ cyclic cubic fields
of discriminant equal to $(p_1...p_k)^2$ by elementary class field theory.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Great, thanks for the example!
    $endgroup$
    – Stanley Yao Xiao
    May 3 at 6:54













7












7








7





$begingroup$

The answers to both questions is no. For instance for $n=3$, if $p_1$,... $p_k$
are primes congruent to $1$ modulo $3$ there exist $(3^k-1)/2$ cyclic cubic fields
of discriminant equal to $(p_1...p_k)^2$ by elementary class field theory.






share|cite|improve this answer









$endgroup$



The answers to both questions is no. For instance for $n=3$, if $p_1$,... $p_k$
are primes congruent to $1$ modulo $3$ there exist $(3^k-1)/2$ cyclic cubic fields
of discriminant equal to $(p_1...p_k)^2$ by elementary class field theory.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered May 2 at 19:47









Henri CohenHenri Cohen

3,467525




3,467525











  • $begingroup$
    Great, thanks for the example!
    $endgroup$
    – Stanley Yao Xiao
    May 3 at 6:54
















  • $begingroup$
    Great, thanks for the example!
    $endgroup$
    – Stanley Yao Xiao
    May 3 at 6:54















$begingroup$
Great, thanks for the example!
$endgroup$
– Stanley Yao Xiao
May 3 at 6:54




$begingroup$
Great, thanks for the example!
$endgroup$
– Stanley Yao Xiao
May 3 at 6:54

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330552%2funiform-boundedness-of-the-number-of-number-fields-having-fixed-discriminant%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020