What exactly are the `size issues' preventing formation of presheaves being a left adjoint to some forgetful functor?Are Indizations cocompleteco-Yoneda lemma and representable functorsSifted colimits of models of a Lawvere theory.All $mathsfSet$-valued presheaves on a cocomplete category are representableFlat Modules are Filtered Colimits of Free ModulesNaturality can be detected on a dense subcategoryHow to use adjointness properties of sheafification to show limits/colimits are preservedFree cocompletion and preservation of colimitsWhen is $Ind(mathcalC)$ equivalent to $PSh(mathcalC)$?Ind-completion of a 2-category
If current results hold, Man City would win PL title
How do employ ' ("prime") in math mode at the correct depth?
Unexpected Netflix account registered to my Gmail address - any way it could be a hack attempt?
Non-deterministic Finite Automata | Sipser Example 1.16
Effects of ~10atm pressure on engine design
Where to find every-day healthy food near Heathrow Airport?
Anatomically Correct Carnivorous Tree
Is there any good reason to write "it is easy to see"?
Solubility in different pressure conditions
On what legal basis did the UK remove the 'European Union' from its passport?
Jumping frame contents with beamer and pgfplots
How to distinguish PICTURE OF ME and PICTURE OF MINE in Chinese?
How does emacs `shell-mode` know to prompt for sudo?
Rounding a number extracted by jq to limit the decimal points
Is it possible to create different colors in rocket exhaust?
Why do I get two different answers when solving for arclength?
Help in identifying a mystery wall socket
Is there anything special about -1 (0xFFFFFFFF) regarding ADC?
Why is a set not a partition of itself?
Why would a switch ever send an ARP request for a MAC address when it can just wait for the first packet to be received from a device?
declared variable inside void setup is forgotten in void loop
Could there be a material that inverts the colours seen through it?
Does SQL Server allow (make visible) DDL inside a transaction to the transaction prior to commit?
Conditional probability - sum of dice is even given that at least one is a five
What exactly are the `size issues' preventing formation of presheaves being a left adjoint to some forgetful functor?
Are Indizations cocompleteco-Yoneda lemma and representable functorsSifted colimits of models of a Lawvere theory.All $mathsfSet$-valued presheaves on a cocomplete category are representableFlat Modules are Filtered Colimits of Free ModulesNaturality can be detected on a dense subcategoryHow to use adjointness properties of sheafification to show limits/colimits are preservedFree cocompletion and preservation of colimitsWhen is $Ind(mathcalC)$ equivalent to $PSh(mathcalC)$?Ind-completion of a 2-category
$begingroup$
In my category theory course lecture notes the following theorem:
Theorem: Every presheaf (of sets) on a small category $mathcalC$ is a colimit of representables. More precisely, for each presheaf $F$ we have an isomorphism:
$$ F cong textcolim_(astRightarrow F)^op P $$
for $(ast Rightarrow F)$ the comma category and $P(x, y) := Hom(-, x)$.
is followed up by the following note and theorem:
Note: One says that the presheaf category is the ''free cocompletion'' of $mathcalC$. It is not true that the formation of presheaves is a left adjoint to some forgetful functor due to size issues. [Italics mine]. We do however have:
Theorem: Let $mathcalC$ be a small category and $mathcalD$ a category with all small colimits. Then there is an equivalence of categories:
$$Fun^colim(Preshvs(mathcalC), mathcalD) cong Fun(mathcalC, mathcalD)$$
where the catgeory on the left is the full subcategory of functors preserving small colimits.
What is the statement in italics supposed to mean, and how is the theorem following it supposed to be some sort of weakening of the statement? I cannot seem to get a concrete answer in my head.
category-theory limits-colimits adjoint-functors
$endgroup$
add a comment |
$begingroup$
In my category theory course lecture notes the following theorem:
Theorem: Every presheaf (of sets) on a small category $mathcalC$ is a colimit of representables. More precisely, for each presheaf $F$ we have an isomorphism:
$$ F cong textcolim_(astRightarrow F)^op P $$
for $(ast Rightarrow F)$ the comma category and $P(x, y) := Hom(-, x)$.
is followed up by the following note and theorem:
Note: One says that the presheaf category is the ''free cocompletion'' of $mathcalC$. It is not true that the formation of presheaves is a left adjoint to some forgetful functor due to size issues. [Italics mine]. We do however have:
Theorem: Let $mathcalC$ be a small category and $mathcalD$ a category with all small colimits. Then there is an equivalence of categories:
$$Fun^colim(Preshvs(mathcalC), mathcalD) cong Fun(mathcalC, mathcalD)$$
where the catgeory on the left is the full subcategory of functors preserving small colimits.
What is the statement in italics supposed to mean, and how is the theorem following it supposed to be some sort of weakening of the statement? I cannot seem to get a concrete answer in my head.
category-theory limits-colimits adjoint-functors
$endgroup$
add a comment |
$begingroup$
In my category theory course lecture notes the following theorem:
Theorem: Every presheaf (of sets) on a small category $mathcalC$ is a colimit of representables. More precisely, for each presheaf $F$ we have an isomorphism:
$$ F cong textcolim_(astRightarrow F)^op P $$
for $(ast Rightarrow F)$ the comma category and $P(x, y) := Hom(-, x)$.
is followed up by the following note and theorem:
Note: One says that the presheaf category is the ''free cocompletion'' of $mathcalC$. It is not true that the formation of presheaves is a left adjoint to some forgetful functor due to size issues. [Italics mine]. We do however have:
Theorem: Let $mathcalC$ be a small category and $mathcalD$ a category with all small colimits. Then there is an equivalence of categories:
$$Fun^colim(Preshvs(mathcalC), mathcalD) cong Fun(mathcalC, mathcalD)$$
where the catgeory on the left is the full subcategory of functors preserving small colimits.
What is the statement in italics supposed to mean, and how is the theorem following it supposed to be some sort of weakening of the statement? I cannot seem to get a concrete answer in my head.
category-theory limits-colimits adjoint-functors
$endgroup$
In my category theory course lecture notes the following theorem:
Theorem: Every presheaf (of sets) on a small category $mathcalC$ is a colimit of representables. More precisely, for each presheaf $F$ we have an isomorphism:
$$ F cong textcolim_(astRightarrow F)^op P $$
for $(ast Rightarrow F)$ the comma category and $P(x, y) := Hom(-, x)$.
is followed up by the following note and theorem:
Note: One says that the presheaf category is the ''free cocompletion'' of $mathcalC$. It is not true that the formation of presheaves is a left adjoint to some forgetful functor due to size issues. [Italics mine]. We do however have:
Theorem: Let $mathcalC$ be a small category and $mathcalD$ a category with all small colimits. Then there is an equivalence of categories:
$$Fun^colim(Preshvs(mathcalC), mathcalD) cong Fun(mathcalC, mathcalD)$$
where the catgeory on the left is the full subcategory of functors preserving small colimits.
What is the statement in italics supposed to mean, and how is the theorem following it supposed to be some sort of weakening of the statement? I cannot seem to get a concrete answer in my head.
category-theory limits-colimits adjoint-functors
category-theory limits-colimits adjoint-functors
asked May 2 at 18:20
NethesisNethesis
1,9261824
1,9261824
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The problem is that you cannot choose a domain and codomain for such a putative adjunction consistently and simultaneously. The statement that we have is that the category of presheaves on $C$ is the free cocomplete category on $C$ when $C$ is small. However, the forgetful functor from cocomplete categories to categories does not land in small categories-every cocomplete category which is not a preorder is large.
So, you might want an improved adjunction between large categories and cocomplete categories. However, the category of presheaves on a large category is even larger than large! What this means depends on your foundations. If we work with universes so that a small category is $U_1$-small, then presheaves on a small category are small with respect to the next biggest universe $U_2$. Now presheaves on a $U_2$-small category only have the appropriate universal property if we can them to be presheaves of $U_2$-small sets, and such presheaves are not $U_2$-small.
So the presheaves-forgetful functor pair cannot form an adjunction, because the desired left adjoint moves us up a universe every time we apply it. Thus in particular we cannot get around this straightforwardly by using universes.
There are a couple of partial solutions to this problem. The simplest is to regard the formation of the presheaf category as a relative left adjoint to the forgetful functor from cocomplete categories to (possibly) large categories. In other words, it behaves like a left adjoint, but is only partially defined. This is a rephrasing of the theorem you quote-the formation of presheaves behaves like a left adjoint when its input is small.
A more technical approach is to ask the question: even if the formation of presheaves cannot be left adjoint to the forgetful functor from cocomplete categories to large categories, does this forgetful functor have any left adjoint at all? In fact it does; for instance, it satisfies a 2-categorical version of the general adjoint functor theorem. This left adjoint sends a category $K$ to the subcategory of presheaves on $K$ formed by the colimits of small diagrams of representable presheaves. However, this category of small presheaves is not nearly as well behaved as the presheaf category. It needn't even be a topos in general.
So to summarize, this is a real issue which cannot be eradicated by any level of generous assumptions on the foundations. It's the go-to example of why size issues cannot be completely ignored in category theory.
$endgroup$
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
add a comment |
$begingroup$
It's tempting to say that we have an adjunction $mathrmPsh dashv U$ between functors $mathbfCat rightleftarrows mathbfCat_textcolim$, where $mathbfCat_textcolim$ is the category of all cocomplete categories and cocontinuous functors. But in order to make sense of the definition of 'adjunction', we need to refer to hom sets, meaning that $mathbfCat$ and $mathbfCat_mathrmcolim$ to be locally small.
So really $mathbfCat$ is the category of all small categories, and likewise for $mathbfCat_mathrmcolim$.
However, even if we restricted the statement to small cocomplete categories $mathcalD$, the category $mathrmPsh(mathcalC)$ is not small in general, and so $mathrmPsh$ is not a functor $mathbfCat to mathbfCat_mathrmcolim$.
However, for fixed small $mathcalC$ and locally small cocomplete $mathcalD$, it makes sense to ask whether there is a bijection between the respective hom sets (or, in this case, an equivalence between hom categories), without requiring the constructions $mathrmPsh$ and $U$ to be functors between categories. So that's the result that is proved in your notes.
You could hack it using a hierarchy of Grothendieck universes, but I wouldn't recommend it.
$endgroup$
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3211339%2fwhat-exactly-are-the-size-issues-preventing-formation-of-presheaves-being-a-le%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem is that you cannot choose a domain and codomain for such a putative adjunction consistently and simultaneously. The statement that we have is that the category of presheaves on $C$ is the free cocomplete category on $C$ when $C$ is small. However, the forgetful functor from cocomplete categories to categories does not land in small categories-every cocomplete category which is not a preorder is large.
So, you might want an improved adjunction between large categories and cocomplete categories. However, the category of presheaves on a large category is even larger than large! What this means depends on your foundations. If we work with universes so that a small category is $U_1$-small, then presheaves on a small category are small with respect to the next biggest universe $U_2$. Now presheaves on a $U_2$-small category only have the appropriate universal property if we can them to be presheaves of $U_2$-small sets, and such presheaves are not $U_2$-small.
So the presheaves-forgetful functor pair cannot form an adjunction, because the desired left adjoint moves us up a universe every time we apply it. Thus in particular we cannot get around this straightforwardly by using universes.
There are a couple of partial solutions to this problem. The simplest is to regard the formation of the presheaf category as a relative left adjoint to the forgetful functor from cocomplete categories to (possibly) large categories. In other words, it behaves like a left adjoint, but is only partially defined. This is a rephrasing of the theorem you quote-the formation of presheaves behaves like a left adjoint when its input is small.
A more technical approach is to ask the question: even if the formation of presheaves cannot be left adjoint to the forgetful functor from cocomplete categories to large categories, does this forgetful functor have any left adjoint at all? In fact it does; for instance, it satisfies a 2-categorical version of the general adjoint functor theorem. This left adjoint sends a category $K$ to the subcategory of presheaves on $K$ formed by the colimits of small diagrams of representable presheaves. However, this category of small presheaves is not nearly as well behaved as the presheaf category. It needn't even be a topos in general.
So to summarize, this is a real issue which cannot be eradicated by any level of generous assumptions on the foundations. It's the go-to example of why size issues cannot be completely ignored in category theory.
$endgroup$
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
add a comment |
$begingroup$
The problem is that you cannot choose a domain and codomain for such a putative adjunction consistently and simultaneously. The statement that we have is that the category of presheaves on $C$ is the free cocomplete category on $C$ when $C$ is small. However, the forgetful functor from cocomplete categories to categories does not land in small categories-every cocomplete category which is not a preorder is large.
So, you might want an improved adjunction between large categories and cocomplete categories. However, the category of presheaves on a large category is even larger than large! What this means depends on your foundations. If we work with universes so that a small category is $U_1$-small, then presheaves on a small category are small with respect to the next biggest universe $U_2$. Now presheaves on a $U_2$-small category only have the appropriate universal property if we can them to be presheaves of $U_2$-small sets, and such presheaves are not $U_2$-small.
So the presheaves-forgetful functor pair cannot form an adjunction, because the desired left adjoint moves us up a universe every time we apply it. Thus in particular we cannot get around this straightforwardly by using universes.
There are a couple of partial solutions to this problem. The simplest is to regard the formation of the presheaf category as a relative left adjoint to the forgetful functor from cocomplete categories to (possibly) large categories. In other words, it behaves like a left adjoint, but is only partially defined. This is a rephrasing of the theorem you quote-the formation of presheaves behaves like a left adjoint when its input is small.
A more technical approach is to ask the question: even if the formation of presheaves cannot be left adjoint to the forgetful functor from cocomplete categories to large categories, does this forgetful functor have any left adjoint at all? In fact it does; for instance, it satisfies a 2-categorical version of the general adjoint functor theorem. This left adjoint sends a category $K$ to the subcategory of presheaves on $K$ formed by the colimits of small diagrams of representable presheaves. However, this category of small presheaves is not nearly as well behaved as the presheaf category. It needn't even be a topos in general.
So to summarize, this is a real issue which cannot be eradicated by any level of generous assumptions on the foundations. It's the go-to example of why size issues cannot be completely ignored in category theory.
$endgroup$
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
add a comment |
$begingroup$
The problem is that you cannot choose a domain and codomain for such a putative adjunction consistently and simultaneously. The statement that we have is that the category of presheaves on $C$ is the free cocomplete category on $C$ when $C$ is small. However, the forgetful functor from cocomplete categories to categories does not land in small categories-every cocomplete category which is not a preorder is large.
So, you might want an improved adjunction between large categories and cocomplete categories. However, the category of presheaves on a large category is even larger than large! What this means depends on your foundations. If we work with universes so that a small category is $U_1$-small, then presheaves on a small category are small with respect to the next biggest universe $U_2$. Now presheaves on a $U_2$-small category only have the appropriate universal property if we can them to be presheaves of $U_2$-small sets, and such presheaves are not $U_2$-small.
So the presheaves-forgetful functor pair cannot form an adjunction, because the desired left adjoint moves us up a universe every time we apply it. Thus in particular we cannot get around this straightforwardly by using universes.
There are a couple of partial solutions to this problem. The simplest is to regard the formation of the presheaf category as a relative left adjoint to the forgetful functor from cocomplete categories to (possibly) large categories. In other words, it behaves like a left adjoint, but is only partially defined. This is a rephrasing of the theorem you quote-the formation of presheaves behaves like a left adjoint when its input is small.
A more technical approach is to ask the question: even if the formation of presheaves cannot be left adjoint to the forgetful functor from cocomplete categories to large categories, does this forgetful functor have any left adjoint at all? In fact it does; for instance, it satisfies a 2-categorical version of the general adjoint functor theorem. This left adjoint sends a category $K$ to the subcategory of presheaves on $K$ formed by the colimits of small diagrams of representable presheaves. However, this category of small presheaves is not nearly as well behaved as the presheaf category. It needn't even be a topos in general.
So to summarize, this is a real issue which cannot be eradicated by any level of generous assumptions on the foundations. It's the go-to example of why size issues cannot be completely ignored in category theory.
$endgroup$
The problem is that you cannot choose a domain and codomain for such a putative adjunction consistently and simultaneously. The statement that we have is that the category of presheaves on $C$ is the free cocomplete category on $C$ when $C$ is small. However, the forgetful functor from cocomplete categories to categories does not land in small categories-every cocomplete category which is not a preorder is large.
So, you might want an improved adjunction between large categories and cocomplete categories. However, the category of presheaves on a large category is even larger than large! What this means depends on your foundations. If we work with universes so that a small category is $U_1$-small, then presheaves on a small category are small with respect to the next biggest universe $U_2$. Now presheaves on a $U_2$-small category only have the appropriate universal property if we can them to be presheaves of $U_2$-small sets, and such presheaves are not $U_2$-small.
So the presheaves-forgetful functor pair cannot form an adjunction, because the desired left adjoint moves us up a universe every time we apply it. Thus in particular we cannot get around this straightforwardly by using universes.
There are a couple of partial solutions to this problem. The simplest is to regard the formation of the presheaf category as a relative left adjoint to the forgetful functor from cocomplete categories to (possibly) large categories. In other words, it behaves like a left adjoint, but is only partially defined. This is a rephrasing of the theorem you quote-the formation of presheaves behaves like a left adjoint when its input is small.
A more technical approach is to ask the question: even if the formation of presheaves cannot be left adjoint to the forgetful functor from cocomplete categories to large categories, does this forgetful functor have any left adjoint at all? In fact it does; for instance, it satisfies a 2-categorical version of the general adjoint functor theorem. This left adjoint sends a category $K$ to the subcategory of presheaves on $K$ formed by the colimits of small diagrams of representable presheaves. However, this category of small presheaves is not nearly as well behaved as the presheaf category. It needn't even be a topos in general.
So to summarize, this is a real issue which cannot be eradicated by any level of generous assumptions on the foundations. It's the go-to example of why size issues cannot be completely ignored in category theory.
edited May 2 at 19:04
answered May 2 at 18:53
Kevin CarlsonKevin Carlson
34.3k23774
34.3k23774
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
add a comment |
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
$begingroup$
I like this answer, too, because it shows that even with universes we cannot obviously and immediately get around the problem - thank you!
$endgroup$
– Nethesis
May 2 at 19:19
add a comment |
$begingroup$
It's tempting to say that we have an adjunction $mathrmPsh dashv U$ between functors $mathbfCat rightleftarrows mathbfCat_textcolim$, where $mathbfCat_textcolim$ is the category of all cocomplete categories and cocontinuous functors. But in order to make sense of the definition of 'adjunction', we need to refer to hom sets, meaning that $mathbfCat$ and $mathbfCat_mathrmcolim$ to be locally small.
So really $mathbfCat$ is the category of all small categories, and likewise for $mathbfCat_mathrmcolim$.
However, even if we restricted the statement to small cocomplete categories $mathcalD$, the category $mathrmPsh(mathcalC)$ is not small in general, and so $mathrmPsh$ is not a functor $mathbfCat to mathbfCat_mathrmcolim$.
However, for fixed small $mathcalC$ and locally small cocomplete $mathcalD$, it makes sense to ask whether there is a bijection between the respective hom sets (or, in this case, an equivalence between hom categories), without requiring the constructions $mathrmPsh$ and $U$ to be functors between categories. So that's the result that is proved in your notes.
You could hack it using a hierarchy of Grothendieck universes, but I wouldn't recommend it.
$endgroup$
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
add a comment |
$begingroup$
It's tempting to say that we have an adjunction $mathrmPsh dashv U$ between functors $mathbfCat rightleftarrows mathbfCat_textcolim$, where $mathbfCat_textcolim$ is the category of all cocomplete categories and cocontinuous functors. But in order to make sense of the definition of 'adjunction', we need to refer to hom sets, meaning that $mathbfCat$ and $mathbfCat_mathrmcolim$ to be locally small.
So really $mathbfCat$ is the category of all small categories, and likewise for $mathbfCat_mathrmcolim$.
However, even if we restricted the statement to small cocomplete categories $mathcalD$, the category $mathrmPsh(mathcalC)$ is not small in general, and so $mathrmPsh$ is not a functor $mathbfCat to mathbfCat_mathrmcolim$.
However, for fixed small $mathcalC$ and locally small cocomplete $mathcalD$, it makes sense to ask whether there is a bijection between the respective hom sets (or, in this case, an equivalence between hom categories), without requiring the constructions $mathrmPsh$ and $U$ to be functors between categories. So that's the result that is proved in your notes.
You could hack it using a hierarchy of Grothendieck universes, but I wouldn't recommend it.
$endgroup$
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
add a comment |
$begingroup$
It's tempting to say that we have an adjunction $mathrmPsh dashv U$ between functors $mathbfCat rightleftarrows mathbfCat_textcolim$, where $mathbfCat_textcolim$ is the category of all cocomplete categories and cocontinuous functors. But in order to make sense of the definition of 'adjunction', we need to refer to hom sets, meaning that $mathbfCat$ and $mathbfCat_mathrmcolim$ to be locally small.
So really $mathbfCat$ is the category of all small categories, and likewise for $mathbfCat_mathrmcolim$.
However, even if we restricted the statement to small cocomplete categories $mathcalD$, the category $mathrmPsh(mathcalC)$ is not small in general, and so $mathrmPsh$ is not a functor $mathbfCat to mathbfCat_mathrmcolim$.
However, for fixed small $mathcalC$ and locally small cocomplete $mathcalD$, it makes sense to ask whether there is a bijection between the respective hom sets (or, in this case, an equivalence between hom categories), without requiring the constructions $mathrmPsh$ and $U$ to be functors between categories. So that's the result that is proved in your notes.
You could hack it using a hierarchy of Grothendieck universes, but I wouldn't recommend it.
$endgroup$
It's tempting to say that we have an adjunction $mathrmPsh dashv U$ between functors $mathbfCat rightleftarrows mathbfCat_textcolim$, where $mathbfCat_textcolim$ is the category of all cocomplete categories and cocontinuous functors. But in order to make sense of the definition of 'adjunction', we need to refer to hom sets, meaning that $mathbfCat$ and $mathbfCat_mathrmcolim$ to be locally small.
So really $mathbfCat$ is the category of all small categories, and likewise for $mathbfCat_mathrmcolim$.
However, even if we restricted the statement to small cocomplete categories $mathcalD$, the category $mathrmPsh(mathcalC)$ is not small in general, and so $mathrmPsh$ is not a functor $mathbfCat to mathbfCat_mathrmcolim$.
However, for fixed small $mathcalC$ and locally small cocomplete $mathcalD$, it makes sense to ask whether there is a bijection between the respective hom sets (or, in this case, an equivalence between hom categories), without requiring the constructions $mathrmPsh$ and $U$ to be functors between categories. So that's the result that is proved in your notes.
You could hack it using a hierarchy of Grothendieck universes, but I wouldn't recommend it.
edited May 2 at 18:40
answered May 2 at 18:32
Clive NewsteadClive Newstead
52.8k474138
52.8k474138
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
add a comment |
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
$begingroup$
Yeah "size issues" always confuse me a bit, because I tend to just think its all relative to your universe anyway. I can see that doing so freely might cause subtle issues and complication to pop up, though. This makes sense, though, so thank you.
$endgroup$
– Nethesis
May 2 at 19:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3211339%2fwhat-exactly-are-the-size-issues-preventing-formation-of-presheaves-being-a-le%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown