In a spin, are both wings stalled?How does the advancing wing in a flat spin create nose thrust?Is spin recovery possible in an airliner?How long is spin training good for in the USA?Is it possible to recover from a flat spin?If a commercial airliner enters into a spin at high altitude, is it possible to recover?How to enter an inverted spin?What is a good spin aircraft for someone that is heavy?What altitude to fly on a STAR when it reads “expect”?Does it really take 9000 feet to recover from a spin in a P-51 Mustang?Why aren't airliners spin-tested?How does the advancing wing in a flat spin create nose thrust?

Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?

Why is making salt water prohibited on Shabbat?

How to deal with fear of taking dependencies

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Does a dangling wire really electrocute me if I'm standing in water?

Was there ever an axiom rendered a theorem?

How many letters suffice to construct words with no repetition?

How to manage monthly salary

Are cabin dividers used to "hide" the flex of the airplane?

Doomsday-clock for my fantasy planet

Why airport relocation isn't done gradually?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Information to fellow intern about hiring?

What are the advantages and disadvantages of running one shots compared to campaigns?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

Can I find out the caloric content of bread by dehydrating it?

Is a car considered movable or immovable property?

What is the offset in a seaplane's hull?

Is it wise to focus on putting odd beats on left when playing double bass drums?

Eliminate empty elements from a list with a specific pattern

Some basic questions on halt and move in Turing machines

Copycat chess is back

extract characters between two commas?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)



In a spin, are both wings stalled?


How does the advancing wing in a flat spin create nose thrust?Is spin recovery possible in an airliner?How long is spin training good for in the USA?Is it possible to recover from a flat spin?If a commercial airliner enters into a spin at high altitude, is it possible to recover?How to enter an inverted spin?What is a good spin aircraft for someone that is heavy?What altitude to fly on a STAR when it reads “expect”?Does it really take 9000 feet to recover from a spin in a P-51 Mustang?Why aren't airliners spin-tested?How does the advancing wing in a flat spin create nose thrust?













14












$begingroup$


I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










share|improve this question











$endgroup$







  • 9




    $begingroup$
    I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
    $endgroup$
    – Ryan Mortensen
    Apr 5 at 2:39















14












$begingroup$


I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










share|improve this question











$endgroup$







  • 9




    $begingroup$
    I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
    $endgroup$
    – Ryan Mortensen
    Apr 5 at 2:39













14












14








14


2



$begingroup$


I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?










share|improve this question











$endgroup$




I missed a test question which asked that if an airplane was spinning to the left which wing was stalled. The supposed correct answer was that both wings are stalled (I had answered that the left wing only was stalled). However after looking at the this article on Wikipedia it seems to indicate that only one wing needs to be stalled to spin:




In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different. Either situation causes the aircraft to autorotate toward the stalled wing due to its higher drag and loss of lift.




So my question is was it fair for me to have missed that test question since according to Wikipedia a spin can occur with only one wing stalled?







spins faa-knowledge-test






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 5 at 3:47









Sean

5,89232872




5,89232872










asked Apr 4 at 19:41









DLHDLH

2,661931




2,661931







  • 9




    $begingroup$
    I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
    $endgroup$
    – Ryan Mortensen
    Apr 5 at 2:39












  • 9




    $begingroup$
    I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
    $endgroup$
    – Ryan Mortensen
    Apr 5 at 2:39







9




9




$begingroup$
I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
$endgroup$
– Ryan Mortensen
Apr 5 at 2:39




$begingroup$
I would like to note, since the question is tagged with "faa-knowledge-test", the answer is "yes" because the FAA is like the trivia guy at the Mexican restaurant on Saturday night... whether they're right or they're wrong, they're always right; that's just how the game is played.
$endgroup$
– Ryan Mortensen
Apr 5 at 2:39










4 Answers
4






active

oldest

votes


















11












$begingroup$

No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



flow over a spinning wing



On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






share|improve this answer











$endgroup$












  • $begingroup$
    So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
    $endgroup$
    – DLH
    Apr 4 at 21:59






  • 1




    $begingroup$
    @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
    $endgroup$
    – DLH
    Apr 4 at 22:38






  • 2




    $begingroup$
    "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
    $endgroup$
    – Fattie
    Apr 4 at 22:51






  • 3




    $begingroup$
    @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
    $endgroup$
    – Peter Kämpf
    Apr 5 at 7:09







  • 1




    $begingroup$
    @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
    $endgroup$
    – alephzero
    Apr 5 at 10:57


















11












$begingroup$

Yes, both are stalled.



I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift (critical AOA). That's the top of the blue curve in the plot below.



Also, a stalled wing does not mean every point on the wing has unattached flow. It means the wing is operating at an AOA where an increase in AOA results in a decrease in lift.



At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



enter image description here



Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



JMHO!



EDIT



Here’s a NASA video of a wing with tufts when it is both on the inside of the spin and outside. Stalled in both (but different airflow).











share|improve this answer











$endgroup$








  • 3




    $begingroup$
    I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
    $endgroup$
    – DLH
    Apr 4 at 21:35






  • 3




    $begingroup$
    @DLH I think this is a poor answer because it is wrong.
    $endgroup$
    – Peter Kämpf
    Apr 4 at 21:44











  • $begingroup$
    @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
    $endgroup$
    – DLH
    Apr 4 at 21:53






  • 2




    $begingroup$
    In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
    $endgroup$
    – Ryan Mortensen
    Apr 5 at 2:29







  • 4




    $begingroup$
    @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
    $endgroup$
    – DJ319
    Apr 5 at 12:27


















4












$begingroup$

A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






share|improve this answer









$endgroup$




















    0












    $begingroup$

    This "test" question may apply to a certain type of aircraft and spin procedure (Cessna 172) that has to be stalled straightforward (there for both wings stalled), followed by the "wrong" inputs (rudder into spin, ailerons away) to make it spin. The important concept is that differences in drag and lift between the 2 wings, whether one is stalled or not, keeps the plane in a self sustaining yaw/slip.



    Important is the role of the V stab/rudder in maintaining or ending the spin. Looking at a simple cup shaped anomometer helps visualize the effects of pro-spin rudder into the spin and anti-spin rudder away. Stopping yaw with opposite rudder is key to breaking a spin, and controlling yaw is key to not entering one.



    Also key is how uncoordinated aileron input, trying to roll away from a turn, can cause a spin.
    (The "inside" slower wing is now compounded with the down aileron creating a higher AOA).
    Although aileron roll effect can reverse in the stall AOA regime, rudder will not. But this also means that applying opposite ailerons in a spin can be explored! (Qualified instructor recommended).



    But for the 172, just letting go of the yoke, power to idle, and opposite rudder would break the spin if CG was correct.



    Every plane and situation is different (as seen by these answers), it is advisable to find out how your plane handles and how to control it, no matter what the "correct" test answer is.






    share|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "528"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62020%2fin-a-spin-are-both-wings-stalled%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



      During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



      As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



      flow over a spinning wing



      On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



      Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






      share|improve this answer











      $endgroup$












      • $begingroup$
        So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
        $endgroup$
        – DLH
        Apr 4 at 21:59






      • 1




        $begingroup$
        @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
        $endgroup$
        – DLH
        Apr 4 at 22:38






      • 2




        $begingroup$
        "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
        $endgroup$
        – Fattie
        Apr 4 at 22:51






      • 3




        $begingroup$
        @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
        $endgroup$
        – Peter Kämpf
        Apr 5 at 7:09







      • 1




        $begingroup$
        @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
        $endgroup$
        – alephzero
        Apr 5 at 10:57















      11












      $begingroup$

      No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



      During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



      As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



      flow over a spinning wing



      On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



      Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






      share|improve this answer











      $endgroup$












      • $begingroup$
        So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
        $endgroup$
        – DLH
        Apr 4 at 21:59






      • 1




        $begingroup$
        @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
        $endgroup$
        – DLH
        Apr 4 at 22:38






      • 2




        $begingroup$
        "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
        $endgroup$
        – Fattie
        Apr 4 at 22:51






      • 3




        $begingroup$
        @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
        $endgroup$
        – Peter Kämpf
        Apr 5 at 7:09







      • 1




        $begingroup$
        @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
        $endgroup$
        – alephzero
        Apr 5 at 10:57













      11












      11








      11





      $begingroup$

      No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



      During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



      As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



      flow over a spinning wing



      On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



      Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.






      share|improve this answer











      $endgroup$



      No, one wing has at least partially attached flow. How else would there be a rolling and yawing moment which keeps the spin movement alive?



      During a spin the aircraft experiences a linear variation in angle of attack over span. The pitch attitude is between 40° and 60° nose-down, and the local angle of attack is 90° minus the pitch angle, which is between 50° and 30°, at the center wing. Move outward from there and the angle of attack increases on the retarding side and decreases on the advancing side.



      As a consequence, the outer advancing wing will experience a moderate angle of attack which can even become negative at the tip. Therefore, a sizeable portion of that wing side has attached flow with high lift and low drag. On the other side the angle of attack grows to 90° and beyond, so the wing is fully separated and the aerodynamic force is normal to the wing surface. See below for a diagram of the flow direction: The dark blue vector is from the falling motion and the red vector is the product of the yawing moment $omega_z$ times the wing station y. Together they combine to the green vector which produces a resulting aerodynamic force R:



      flow over a spinning wing



      On the left is the retarding wing and on the right the advancing wing. Note that the aerodynamic force is in line with the flow vector on the retarding wing with its fully separated flow while the aerodynamic force is normal to the flow vector due to the attached flow on the advancing wing. The difference in the local forces produces a yawing and rolling moment which balances with the damping forces. If there would not be such an asymmetry, the motion would die down quickly.



      Even in a flat spin, where the pitch attitude is around 0° (resulting in 90° angle of attack at the center wing), the advancing side of a moderate to high aspect ratio wing produces some nose thrust from partially attached flow. How else would the aircraft keep spinnig? Low aspect ratio designs produce a propelling nose vortex on the forward fuselage which keeps the motion alive.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited Apr 4 at 21:50

























      answered Apr 4 at 21:39









      Peter KämpfPeter Kämpf

      161k12411656




      161k12411656











      • $begingroup$
        So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
        $endgroup$
        – DLH
        Apr 4 at 21:59






      • 1




        $begingroup$
        @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
        $endgroup$
        – DLH
        Apr 4 at 22:38






      • 2




        $begingroup$
        "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
        $endgroup$
        – Fattie
        Apr 4 at 22:51






      • 3




        $begingroup$
        @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
        $endgroup$
        – Peter Kämpf
        Apr 5 at 7:09







      • 1




        $begingroup$
        @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
        $endgroup$
        – alephzero
        Apr 5 at 10:57
















      • $begingroup$
        So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
        $endgroup$
        – DLH
        Apr 4 at 21:59






      • 1




        $begingroup$
        @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
        $endgroup$
        – DLH
        Apr 4 at 22:38






      • 2




        $begingroup$
        "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
        $endgroup$
        – Fattie
        Apr 4 at 22:51






      • 3




        $begingroup$
        @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
        $endgroup$
        – Peter Kämpf
        Apr 5 at 7:09







      • 1




        $begingroup$
        @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
        $endgroup$
        – alephzero
        Apr 5 at 10:57















      $begingroup$
      So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
      $endgroup$
      – DLH
      Apr 4 at 21:59




      $begingroup$
      So this is kind of like a helicopter rotor retreating blade stall where the retreating side can stall due to higher angle of attack?
      $endgroup$
      – DLH
      Apr 4 at 21:59




      1




      1




      $begingroup$
      @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
      $endgroup$
      – DLH
      Apr 4 at 22:38




      $begingroup$
      @MikeY: I believe that you are referencing washout which means the root of the wing will stall before the tip and this is used to keep some roll stability in the stall. However I believe the situation Peter presents here is that the tip stalls before the root.
      $endgroup$
      – DLH
      Apr 4 at 22:38




      2




      2




      $begingroup$
      "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
      $endgroup$
      – Fattie
      Apr 4 at 22:51




      $begingroup$
      "How else would there be a rolling and yawing moment which keeps the spin movement alive?" Rhetorical questions are unbecoming, Peter! :)
      $endgroup$
      – Fattie
      Apr 4 at 22:51




      3




      3




      $begingroup$
      @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
      $endgroup$
      – Peter Kämpf
      Apr 5 at 7:09





      $begingroup$
      @RyanMortensen: There is a lot of nonsense making the rounds in pilot circles. I have not encountered the "both wings are stalled" myth myself, but how false it is depends on what stalled means. Note that I (indirectly) say that the inner part of the advancing wing is stalled. But what counts is the outer part with the long lateral lever arm, and that is not stalled.
      $endgroup$
      – Peter Kämpf
      Apr 5 at 7:09





      1




      1




      $begingroup$
      @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
      $endgroup$
      – alephzero
      Apr 5 at 10:57




      $begingroup$
      @PeterKämpf "How else would the aircraft keep spinning?" That depends what the pilot is doing with the rudder. A flat spin doesn't mean zero forward airspeed! But you are right, most of this is a debate about terminology, not physics. It may be true (for some definition of "stall" ) that both wings are stalled in a "straight and level" full stall, but if that stall evolves into a spin one wing then becomes unstalled. But from the pilot's point of view, so what? Carrying out the standard recovery procedures don't depend on knowing the answer to that sort of trivia question.
      $endgroup$
      – alephzero
      Apr 5 at 10:57











      11












      $begingroup$

      Yes, both are stalled.



      I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift (critical AOA). That's the top of the blue curve in the plot below.



      Also, a stalled wing does not mean every point on the wing has unattached flow. It means the wing is operating at an AOA where an increase in AOA results in a decrease in lift.



      At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



      At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



      enter image description here



      Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



      Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



      So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



      JMHO!



      EDIT



      Here’s a NASA video of a wing with tufts when it is both on the inside of the spin and outside. Stalled in both (but different airflow).











      share|improve this answer











      $endgroup$








      • 3




        $begingroup$
        I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
        $endgroup$
        – DLH
        Apr 4 at 21:35






      • 3




        $begingroup$
        @DLH I think this is a poor answer because it is wrong.
        $endgroup$
        – Peter Kämpf
        Apr 4 at 21:44











      • $begingroup$
        @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
        $endgroup$
        – DLH
        Apr 4 at 21:53






      • 2




        $begingroup$
        In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
        $endgroup$
        – Ryan Mortensen
        Apr 5 at 2:29







      • 4




        $begingroup$
        @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
        $endgroup$
        – DJ319
        Apr 5 at 12:27















      11












      $begingroup$

      Yes, both are stalled.



      I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift (critical AOA). That's the top of the blue curve in the plot below.



      Also, a stalled wing does not mean every point on the wing has unattached flow. It means the wing is operating at an AOA where an increase in AOA results in a decrease in lift.



      At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



      At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



      enter image description here



      Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



      Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



      So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



      JMHO!



      EDIT



      Here’s a NASA video of a wing with tufts when it is both on the inside of the spin and outside. Stalled in both (but different airflow).











      share|improve this answer











      $endgroup$








      • 3




        $begingroup$
        I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
        $endgroup$
        – DLH
        Apr 4 at 21:35






      • 3




        $begingroup$
        @DLH I think this is a poor answer because it is wrong.
        $endgroup$
        – Peter Kämpf
        Apr 4 at 21:44











      • $begingroup$
        @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
        $endgroup$
        – DLH
        Apr 4 at 21:53






      • 2




        $begingroup$
        In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
        $endgroup$
        – Ryan Mortensen
        Apr 5 at 2:29







      • 4




        $begingroup$
        @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
        $endgroup$
        – DJ319
        Apr 5 at 12:27













      11












      11








      11





      $begingroup$

      Yes, both are stalled.



      I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift (critical AOA). That's the top of the blue curve in the plot below.



      Also, a stalled wing does not mean every point on the wing has unattached flow. It means the wing is operating at an AOA where an increase in AOA results in a decrease in lift.



      At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



      At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



      enter image description here



      Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



      Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



      So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



      JMHO!



      EDIT



      Here’s a NASA video of a wing with tufts when it is both on the inside of the spin and outside. Stalled in both (but different airflow).











      share|improve this answer











      $endgroup$



      Yes, both are stalled.



      I guess a nit-pick is on "what is stalled"? I adopt that you are at or beyond the point that an increase in AOA results in an increase in lift (critical AOA). That's the top of the blue curve in the plot below.



      Also, a stalled wing does not mean every point on the wing has unattached flow. It means the wing is operating at an AOA where an increase in AOA results in a decrease in lift.



      At low angles of attack (AOA) planes are naturally stable in roll. The downgoing wing sees a higher AOA which results in more lift, and a restoring force. The upgoing wings sees a lower AOA, and less lift, so it is stabilizing too.



      At a high AOA, though, you are operating on the backside of the wing lift diagram. In the picture below, this would be at and beyond 20 degrees AOA.



      enter image description here



      Now, the upgoing wing sees more lift, which leads to positively reinforcing going up. Same but opposite on the downgoing. It sees less lift.



      Also, the red line shows drag. That downgoing wing (on inside of the spin) sees a great increase in drag, which will lead to a yaw towards that wing, i.e., pro-spin.



      So to get in the situation where a roll/yaw movement is positively reinforcing, you need to be in stalled AOA. You might start with just one wing, you'll get to both.



      JMHO!



      EDIT



      Here’s a NASA video of a wing with tufts when it is both on the inside of the spin and outside. Stalled in both (but different airflow).




















      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited Apr 5 at 12:55

























      answered Apr 4 at 20:12









      MikeYMikeY

      69417




      69417







      • 3




        $begingroup$
        I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
        $endgroup$
        – DLH
        Apr 4 at 21:35






      • 3




        $begingroup$
        @DLH I think this is a poor answer because it is wrong.
        $endgroup$
        – Peter Kämpf
        Apr 4 at 21:44











      • $begingroup$
        @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
        $endgroup$
        – DLH
        Apr 4 at 21:53






      • 2




        $begingroup$
        In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
        $endgroup$
        – Ryan Mortensen
        Apr 5 at 2:29







      • 4




        $begingroup$
        @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
        $endgroup$
        – DJ319
        Apr 5 at 12:27












      • 3




        $begingroup$
        I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
        $endgroup$
        – DLH
        Apr 4 at 21:35






      • 3




        $begingroup$
        @DLH I think this is a poor answer because it is wrong.
        $endgroup$
        – Peter Kämpf
        Apr 4 at 21:44











      • $begingroup$
        @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
        $endgroup$
        – DLH
        Apr 4 at 21:53






      • 2




        $begingroup$
        In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
        $endgroup$
        – Ryan Mortensen
        Apr 5 at 2:29







      • 4




        $begingroup$
        @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
        $endgroup$
        – DJ319
        Apr 5 at 12:27







      3




      3




      $begingroup$
      I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
      $endgroup$
      – DLH
      Apr 4 at 21:35




      $begingroup$
      I think this is a good answer. I've been reading up on spins. While I think that maybe only one wing will stall during the departure phase of the spin, by the time the spin is in the developed stage both wings will be stalled. I think the test question could have been better worded though.
      $endgroup$
      – DLH
      Apr 4 at 21:35




      3




      3




      $begingroup$
      @DLH I think this is a poor answer because it is wrong.
      $endgroup$
      – Peter Kämpf
      Apr 4 at 21:44





      $begingroup$
      @DLH I think this is a poor answer because it is wrong.
      $endgroup$
      – Peter Kämpf
      Apr 4 at 21:44













      $begingroup$
      @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
      $endgroup$
      – DLH
      Apr 4 at 21:53




      $begingroup$
      @PeterKämpf: Oh man I wish you had answered sooner, I was persuaded.
      $endgroup$
      – DLH
      Apr 4 at 21:53




      2




      2




      $begingroup$
      In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
      $endgroup$
      – Ryan Mortensen
      Apr 5 at 2:29





      $begingroup$
      In your answer, you ask, "What is stalled?" Good question. So have you defined what you are considering stalled to mean for the purpose of the answer? Some people will think of stalled to mean something like, "not generating enough lift to oppose the force of weight". The technical answer is exceeding the critical angle of attack.
      $endgroup$
      – Ryan Mortensen
      Apr 5 at 2:29





      4




      4




      $begingroup$
      @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
      $endgroup$
      – DJ319
      Apr 5 at 12:27




      $begingroup$
      @PeterKämpf Why is he wrong the flight test shown in the video clearly shows both wings stalled during the spin.
      $endgroup$
      – DJ319
      Apr 5 at 12:27











      4












      $begingroup$

      A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






      share|improve this answer









      $endgroup$

















        4












        $begingroup$

        A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






        share|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.






          share|improve this answer









          $endgroup$



          A spin is an autorotation that requires an asymmetric thrust force to sustain. This requires the wing span to be anchored at one end by drag, with the other end developing enough thrust to overcome the (rather weak) stabilizing force of the vertical fin and drive that end forward, rotating the plane. The AOA is highest at the inboard end and decreases as you move outboard due to the higher forward velocity. At some point along the span, the outer end is unstalled or only semi-stalled and is making at least some amount of lift/thrust.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Apr 4 at 21:53









          John KJohn K

          24.7k13674




          24.7k13674





















              0












              $begingroup$

              This "test" question may apply to a certain type of aircraft and spin procedure (Cessna 172) that has to be stalled straightforward (there for both wings stalled), followed by the "wrong" inputs (rudder into spin, ailerons away) to make it spin. The important concept is that differences in drag and lift between the 2 wings, whether one is stalled or not, keeps the plane in a self sustaining yaw/slip.



              Important is the role of the V stab/rudder in maintaining or ending the spin. Looking at a simple cup shaped anomometer helps visualize the effects of pro-spin rudder into the spin and anti-spin rudder away. Stopping yaw with opposite rudder is key to breaking a spin, and controlling yaw is key to not entering one.



              Also key is how uncoordinated aileron input, trying to roll away from a turn, can cause a spin.
              (The "inside" slower wing is now compounded with the down aileron creating a higher AOA).
              Although aileron roll effect can reverse in the stall AOA regime, rudder will not. But this also means that applying opposite ailerons in a spin can be explored! (Qualified instructor recommended).



              But for the 172, just letting go of the yoke, power to idle, and opposite rudder would break the spin if CG was correct.



              Every plane and situation is different (as seen by these answers), it is advisable to find out how your plane handles and how to control it, no matter what the "correct" test answer is.






              share|improve this answer











              $endgroup$

















                0












                $begingroup$

                This "test" question may apply to a certain type of aircraft and spin procedure (Cessna 172) that has to be stalled straightforward (there for both wings stalled), followed by the "wrong" inputs (rudder into spin, ailerons away) to make it spin. The important concept is that differences in drag and lift between the 2 wings, whether one is stalled or not, keeps the plane in a self sustaining yaw/slip.



                Important is the role of the V stab/rudder in maintaining or ending the spin. Looking at a simple cup shaped anomometer helps visualize the effects of pro-spin rudder into the spin and anti-spin rudder away. Stopping yaw with opposite rudder is key to breaking a spin, and controlling yaw is key to not entering one.



                Also key is how uncoordinated aileron input, trying to roll away from a turn, can cause a spin.
                (The "inside" slower wing is now compounded with the down aileron creating a higher AOA).
                Although aileron roll effect can reverse in the stall AOA regime, rudder will not. But this also means that applying opposite ailerons in a spin can be explored! (Qualified instructor recommended).



                But for the 172, just letting go of the yoke, power to idle, and opposite rudder would break the spin if CG was correct.



                Every plane and situation is different (as seen by these answers), it is advisable to find out how your plane handles and how to control it, no matter what the "correct" test answer is.






                share|improve this answer











                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  This "test" question may apply to a certain type of aircraft and spin procedure (Cessna 172) that has to be stalled straightforward (there for both wings stalled), followed by the "wrong" inputs (rudder into spin, ailerons away) to make it spin. The important concept is that differences in drag and lift between the 2 wings, whether one is stalled or not, keeps the plane in a self sustaining yaw/slip.



                  Important is the role of the V stab/rudder in maintaining or ending the spin. Looking at a simple cup shaped anomometer helps visualize the effects of pro-spin rudder into the spin and anti-spin rudder away. Stopping yaw with opposite rudder is key to breaking a spin, and controlling yaw is key to not entering one.



                  Also key is how uncoordinated aileron input, trying to roll away from a turn, can cause a spin.
                  (The "inside" slower wing is now compounded with the down aileron creating a higher AOA).
                  Although aileron roll effect can reverse in the stall AOA regime, rudder will not. But this also means that applying opposite ailerons in a spin can be explored! (Qualified instructor recommended).



                  But for the 172, just letting go of the yoke, power to idle, and opposite rudder would break the spin if CG was correct.



                  Every plane and situation is different (as seen by these answers), it is advisable to find out how your plane handles and how to control it, no matter what the "correct" test answer is.






                  share|improve this answer











                  $endgroup$



                  This "test" question may apply to a certain type of aircraft and spin procedure (Cessna 172) that has to be stalled straightforward (there for both wings stalled), followed by the "wrong" inputs (rudder into spin, ailerons away) to make it spin. The important concept is that differences in drag and lift between the 2 wings, whether one is stalled or not, keeps the plane in a self sustaining yaw/slip.



                  Important is the role of the V stab/rudder in maintaining or ending the spin. Looking at a simple cup shaped anomometer helps visualize the effects of pro-spin rudder into the spin and anti-spin rudder away. Stopping yaw with opposite rudder is key to breaking a spin, and controlling yaw is key to not entering one.



                  Also key is how uncoordinated aileron input, trying to roll away from a turn, can cause a spin.
                  (The "inside" slower wing is now compounded with the down aileron creating a higher AOA).
                  Although aileron roll effect can reverse in the stall AOA regime, rudder will not. But this also means that applying opposite ailerons in a spin can be explored! (Qualified instructor recommended).



                  But for the 172, just letting go of the yoke, power to idle, and opposite rudder would break the spin if CG was correct.



                  Every plane and situation is different (as seen by these answers), it is advisable to find out how your plane handles and how to control it, no matter what the "correct" test answer is.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Apr 5 at 0:40

























                  answered Apr 4 at 23:35









                  Robert DiGiovanniRobert DiGiovanni

                  2,6881316




                  2,6881316



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Aviation Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62020%2fin-a-spin-are-both-wings-stalled%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

                      Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

                      What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company