Is Lorentz symmetry broken if SUSY is broken?Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?

Multi tool use
Multi tool use

"listening to me about as much as you're listening to this pole here"

Prime joint compound before latex paint?

Is there a name of the flying bionic bird?

A poker game description that does not feel gimmicky

How to manage monthly salary

What do the Banks children have against barley water?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Hosting Wordpress in a EC2 Load Balanced Instance

Does the average primeness of natural numbers tend to zero?

extract characters between two commas?

What are the advantages and disadvantages of running one shots compared to campaigns?

Can I legally use front facing blue light in the UK?

Does it makes sense to buy a new cycle to learn riding?

Unbreakable Formation vs. Cry of the Carnarium

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

Is this relativistic mass?

Is "plugging out" electronic devices an American expression?

"My colleague's body is amazing"

aging parents with no investments

Was there ever an axiom rendered a theorem?

How could a lack of term limits lead to a "dictatorship?"

Why do UK politicians seemingly ignore opinion polls on Brexit?

Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?

Are white and non-white police officers equally likely to kill black suspects?



Is Lorentz symmetry broken if SUSY is broken?


Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?













6












$begingroup$


I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



Is there something I am missing here? Is this even a bad thing?










share|cite|improve this question









$endgroup$
















    6












    $begingroup$


    I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



    We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



    $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



    If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



    $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



    Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



    Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



    Is there something I am missing here? Is this even a bad thing?










    share|cite|improve this question









    $endgroup$














      6












      6








      6


      2



      $begingroup$


      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?










      share|cite|improve this question









      $endgroup$




      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?







      quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 4 at 21:43









      LucashWindowWasherLucashWindowWasher

      32312




      32312




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            Apr 4 at 23:37











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            Apr 4 at 23:37















          5












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            Apr 4 at 23:37













          5












          5








          5





          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$



          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 4 at 22:13









          knzhouknzhou

          46.8k11126224




          46.8k11126224











          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            Apr 4 at 23:37
















          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            Apr 4 at 23:37















          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          Apr 4 at 23:37




          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          Apr 4 at 23:37

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          j23mzjiLLsxH9 Om9RkQcj51Af4B,Bd2JtZ9,UhXzJzREEQO21Zipawv2Wp,SjV0ikaD1wh
          rI52h9R2 hoK,FHK yOcDgN7qO4Pc

          Popular posts from this blog

          RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020