Is Lorentz symmetry broken if SUSY is broken?Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?
"listening to me about as much as you're listening to this pole here"
Prime joint compound before latex paint?
Is there a name of the flying bionic bird?
A poker game description that does not feel gimmicky
How to manage monthly salary
What do the Banks children have against barley water?
What is GPS' 19 year rollover and does it present a cybersecurity issue?
Hosting Wordpress in a EC2 Load Balanced Instance
Does the average primeness of natural numbers tend to zero?
extract characters between two commas?
What are the advantages and disadvantages of running one shots compared to campaigns?
Can I legally use front facing blue light in the UK?
Does it makes sense to buy a new cycle to learn riding?
Unbreakable Formation vs. Cry of the Carnarium
What causes the sudden spool-up sound from an F-16 when enabling afterburner?
Is this relativistic mass?
Is "plugging out" electronic devices an American expression?
"My colleague's body is amazing"
aging parents with no investments
Was there ever an axiom rendered a theorem?
How could a lack of term limits lead to a "dictatorship?"
Why do UK politicians seemingly ignore opinion polls on Brexit?
Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?
Are white and non-white police officers equally likely to kill black suspects?
Is Lorentz symmetry broken if SUSY is broken?
Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?
$begingroup$
I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.
We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have
$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$
If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:
$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$
Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.
Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.
Is there something I am missing here? Is this even a bad thing?
quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking
$endgroup$
add a comment |
$begingroup$
I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.
We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have
$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$
If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:
$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$
Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.
Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.
Is there something I am missing here? Is this even a bad thing?
quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking
$endgroup$
add a comment |
$begingroup$
I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.
We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have
$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$
If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:
$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$
Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.
Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.
Is there something I am missing here? Is this even a bad thing?
quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking
$endgroup$
I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.
We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have
$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$
If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:
$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$
Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.
Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.
Is there something I am missing here? Is this even a bad thing?
quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking
quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking
asked Apr 4 at 21:43
LucashWindowWasherLucashWindowWasher
32312
32312
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.
I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.
$endgroup$
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.
I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.
$endgroup$
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
add a comment |
$begingroup$
No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.
I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.
$endgroup$
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
add a comment |
$begingroup$
No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.
I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.
$endgroup$
No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.
I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.
answered Apr 4 at 22:13
knzhouknzhou
46.8k11126224
46.8k11126224
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
add a comment |
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
$begingroup$
That makes so much sense!
$endgroup$
– LucashWindowWasher
Apr 4 at 23:37
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown