Minkowski space The 2019 Stack Overflow Developer Survey Results Are InMinkowski MetricMinkowski Metric SignatureMinkowski metric — why does it follow from the constancy of the speed of light?Minkowski spacetime: Is there a signature (+,+,+,+)?Minkowski spacetime vs Euclidian spaceMinkowski metric: Why does it look like it does?Minkowski spacetime with a twist?Understanding space-like hyperplanes in Minkowski spaceCan an a distance in Minkowski space, based on a Euclidean plane, be time-like?Affine space for Minkowski space time

Apparent duplicates between Haynes service instructions and MOT

Identify boardgame from Big movie

One word riddle: Vowel in the middle

Why isn't airport relocation done gradually?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Geography at the pixel level

Is there a symbol for a right arrow with a square in the middle?

Looking for Correct Greek Translation for Heraclitus

Delete all lines which don't have n characters before delimiter

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

Why can Shazam fly?

Does the shape of a die affect the probability of a number being rolled?

The difference between dialogue marks

How come people say “Would of”?

How technical should a Scrum Master be to effectively remove impediments?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Did Section 31 appear in Star Trek: The Next Generation?

Right tool to dig six foot holes?

What is the meaning of Triage in Cybersec world?

How to notate time signature switching consistently every measure

How to deal with fear of taking dependencies

Why is the maximum length of OpenWrt’s root password 8 characters?

What is the closest word meaning "respect for time / mindful"

Why do UK politicians seemingly ignore opinion polls on Brexit?



Minkowski space



The 2019 Stack Overflow Developer Survey Results Are InMinkowski MetricMinkowski Metric SignatureMinkowski metric — why does it follow from the constancy of the speed of light?Minkowski spacetime: Is there a signature (+,+,+,+)?Minkowski spacetime vs Euclidian spaceMinkowski metric: Why does it look like it does?Minkowski spacetime with a twist?Understanding space-like hyperplanes in Minkowski spaceCan an a distance in Minkowski space, based on a Euclidean plane, be time-like?Affine space for Minkowski space time










1












$begingroup$



  1. In Minkowski space, coordinates which satisfy



    $x^2 = t^2 - X^2 > 0$



    are in the region of spacetime that is time-like.




  2. If it's



    $x^2 = t^2 - X^2 < 0$



    the region is space-like.




  3. But if



    $x^2 = t^2 - X^2 > 0$



    then its "trajectory of light-like particles".



I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".



My confusion is - why just light-like particles? There are many other particles at quantum level.










share|cite|improve this question









New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    In the future, please use MathJax, not HTML markup, to display math. Thanks.
    $endgroup$
    – G. Smith
    Apr 6 at 22:38















1












$begingroup$



  1. In Minkowski space, coordinates which satisfy



    $x^2 = t^2 - X^2 > 0$



    are in the region of spacetime that is time-like.




  2. If it's



    $x^2 = t^2 - X^2 < 0$



    the region is space-like.




  3. But if



    $x^2 = t^2 - X^2 > 0$



    then its "trajectory of light-like particles".



I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".



My confusion is - why just light-like particles? There are many other particles at quantum level.










share|cite|improve this question









New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    In the future, please use MathJax, not HTML markup, to display math. Thanks.
    $endgroup$
    – G. Smith
    Apr 6 at 22:38













1












1








1





$begingroup$



  1. In Minkowski space, coordinates which satisfy



    $x^2 = t^2 - X^2 > 0$



    are in the region of spacetime that is time-like.




  2. If it's



    $x^2 = t^2 - X^2 < 0$



    the region is space-like.




  3. But if



    $x^2 = t^2 - X^2 > 0$



    then its "trajectory of light-like particles".



I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".



My confusion is - why just light-like particles? There are many other particles at quantum level.










share|cite|improve this question









New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





  1. In Minkowski space, coordinates which satisfy



    $x^2 = t^2 - X^2 > 0$



    are in the region of spacetime that is time-like.




  2. If it's



    $x^2 = t^2 - X^2 < 0$



    the region is space-like.




  3. But if



    $x^2 = t^2 - X^2 > 0$



    then its "trajectory of light-like particles".



I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".



My confusion is - why just light-like particles? There are many other particles at quantum level.







special-relativity mass metric-tensor causality






share|cite|improve this question









New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 7 at 10:02









Gallifreyan

1056




1056






New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 6 at 20:07









sk9298sk9298

826




826




New contributor




sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






sk9298 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    In the future, please use MathJax, not HTML markup, to display math. Thanks.
    $endgroup$
    – G. Smith
    Apr 6 at 22:38
















  • $begingroup$
    In the future, please use MathJax, not HTML markup, to display math. Thanks.
    $endgroup$
    – G. Smith
    Apr 6 at 22:38















$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38




$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38










2 Answers
2






active

oldest

votes


















3












$begingroup$

Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.



The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.






share|cite|improve this answer









$endgroup$




















    5












    $begingroup$


    My confusion is about why just light like particles? there are many other particles at quantum level.




    You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.



    An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      sk9298 is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470979%2fminkowski-space%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.



      The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.



        The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.



          The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.






          share|cite|improve this answer









          $endgroup$



          Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.



          The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 6 at 20:13









          LucashWindowWasherLucashWindowWasher

          34312




          34312





















              5












              $begingroup$


              My confusion is about why just light like particles? there are many other particles at quantum level.




              You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.



              An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$


                My confusion is about why just light like particles? there are many other particles at quantum level.




                You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.



                An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$


                  My confusion is about why just light like particles? there are many other particles at quantum level.




                  You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.



                  An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.






                  share|cite|improve this answer









                  $endgroup$




                  My confusion is about why just light like particles? there are many other particles at quantum level.




                  You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.



                  An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 6 at 20:17









                  DaleDale

                  6,6851829




                  6,6851829




















                      sk9298 is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      sk9298 is a new contributor. Be nice, and check out our Code of Conduct.












                      sk9298 is a new contributor. Be nice, and check out our Code of Conduct.











                      sk9298 is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470979%2fminkowski-space%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020