Smoothness of finite-dimensional functional calculus The 2019 Stack Overflow Developer Survey Results Are In“Converse” of Taylor's theoremHow “generalized eigenvalues” combine into producing the spectral measure?Can be this operator extended to an unbounded self-adjoint operator ? Resonance of Schrödinger operatorFinding the spectrum of the composition of a projection with a multiplication operatorSchrodinger's equation via Spectral TheoremIs there an asymptotic bound for this oscillatory integral?If $H$ is the closure of the set of solenoidal smooth vecor fields in $L^2$ and $P_H$ denote the orthogonal projection onto $H$, then $P_HH_0^1⊆H_0^1$Gaps in the spectrum of Laplace-Beltrami operatorsPerturbation theory compact operatorIf $A$ is a dissipative self-adjoint operator with spectral decomposition $(H_λ)$, then $e^tAx$ tends to the projection of $x$ onto $H_0$ as $t→∞$

Smoothness of finite-dimensional functional calculus



The 2019 Stack Overflow Developer Survey Results Are In“Converse” of Taylor's theoremHow “generalized eigenvalues” combine into producing the spectral measure?Can be this operator extended to an unbounded self-adjoint operator ? Resonance of Schrödinger operatorFinding the spectrum of the composition of a projection with a multiplication operatorSchrodinger's equation via Spectral TheoremIs there an asymptotic bound for this oscillatory integral?If $H$ is the closure of the set of solenoidal smooth vecor fields in $L^2$ and $P_H$ denote the orthogonal projection onto $H$, then $P_HH_0^1⊆H_0^1$Gaps in the spectrum of Laplace-Beltrami operatorsPerturbation theory compact operatorIf $A$ is a dissipative self-adjoint operator with spectral decomposition $(H_λ)$, then $e^tAx$ tends to the projection of $x$ onto $H_0$ as $t→∞$










11












$begingroup$


Assume that $f:mathbb Rtomathbb R$ is continuous.
Given a real symmetric matrix $AintextSym(n)$, we can define $f(A)$ by applying $f$ to its spectrum. More explicitly,
$$ f(A):=sum f(lambda)P_lambda,qquad A=sumlambda P_lambda. $$
Here both sums are finite, and the second one is the decomposition of $A$ as a linear combination of orthogonal projections ($P_lambda$ is the projection onto the eigenspace for the eigenvalue $lambda$, so that $P_lambda P_lambda'=0$). Such decomposition exists and is unique by the spectral theorem.



I guess it is well known that $f:textSym(n)totextSym(n)$ is continuous.




Assuming $fin C^infty(mathbb R)$, is the induced map $f:textSym(n)totextSym(n)$ also smooth?




I think I can show that it is (Fréchet) differentiable everywhere, but I am wondering whether it is always $C^1$ or even $C^infty$.










share|cite|improve this question









$endgroup$
















    11












    $begingroup$


    Assume that $f:mathbb Rtomathbb R$ is continuous.
    Given a real symmetric matrix $AintextSym(n)$, we can define $f(A)$ by applying $f$ to its spectrum. More explicitly,
    $$ f(A):=sum f(lambda)P_lambda,qquad A=sumlambda P_lambda. $$
    Here both sums are finite, and the second one is the decomposition of $A$ as a linear combination of orthogonal projections ($P_lambda$ is the projection onto the eigenspace for the eigenvalue $lambda$, so that $P_lambda P_lambda'=0$). Such decomposition exists and is unique by the spectral theorem.



    I guess it is well known that $f:textSym(n)totextSym(n)$ is continuous.




    Assuming $fin C^infty(mathbb R)$, is the induced map $f:textSym(n)totextSym(n)$ also smooth?




    I think I can show that it is (Fréchet) differentiable everywhere, but I am wondering whether it is always $C^1$ or even $C^infty$.










    share|cite|improve this question









    $endgroup$














      11












      11








      11


      5



      $begingroup$


      Assume that $f:mathbb Rtomathbb R$ is continuous.
      Given a real symmetric matrix $AintextSym(n)$, we can define $f(A)$ by applying $f$ to its spectrum. More explicitly,
      $$ f(A):=sum f(lambda)P_lambda,qquad A=sumlambda P_lambda. $$
      Here both sums are finite, and the second one is the decomposition of $A$ as a linear combination of orthogonal projections ($P_lambda$ is the projection onto the eigenspace for the eigenvalue $lambda$, so that $P_lambda P_lambda'=0$). Such decomposition exists and is unique by the spectral theorem.



      I guess it is well known that $f:textSym(n)totextSym(n)$ is continuous.




      Assuming $fin C^infty(mathbb R)$, is the induced map $f:textSym(n)totextSym(n)$ also smooth?




      I think I can show that it is (Fréchet) differentiable everywhere, but I am wondering whether it is always $C^1$ or even $C^infty$.










      share|cite|improve this question









      $endgroup$




      Assume that $f:mathbb Rtomathbb R$ is continuous.
      Given a real symmetric matrix $AintextSym(n)$, we can define $f(A)$ by applying $f$ to its spectrum. More explicitly,
      $$ f(A):=sum f(lambda)P_lambda,qquad A=sumlambda P_lambda. $$
      Here both sums are finite, and the second one is the decomposition of $A$ as a linear combination of orthogonal projections ($P_lambda$ is the projection onto the eigenspace for the eigenvalue $lambda$, so that $P_lambda P_lambda'=0$). Such decomposition exists and is unique by the spectral theorem.



      I guess it is well known that $f:textSym(n)totextSym(n)$ is continuous.




      Assuming $fin C^infty(mathbb R)$, is the induced map $f:textSym(n)totextSym(n)$ also smooth?




      I think I can show that it is (Fréchet) differentiable everywhere, but I am wondering whether it is always $C^1$ or even $C^infty$.







      fa.functional-analysis real-analysis sp.spectral-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 6 at 17:05









      MizarMizar

      1,6781024




      1,6781024




















          2 Answers
          2






          active

          oldest

          votes


















          9












          $begingroup$

          Yes. The can be derived from the resolvent formalism.



          I'll just do the $C^1$ case and leave higher derivatives as an exercise - ask if it's not clear how to generalize. I am basically using formula (2.7) of "On differentiability of symmetric matrix valued functions", Alexander Shapiro, http://www.optimization-online.org/DB_HTML/2002/07/499.html. (I think there's a typo in the middle case of the display preceeding (2.7): $f(mu_j)/(mu_j-mu_k)$ should be $(f(mu_j)-f(mu_k))/(mu_j-mu_k).$) Shapiro's paper references "(cf., [4])", where [4] is the 600-page textbook "Perturbation Theory for Linear Operators" by T. Kato, but I don't know if that is helpful for this specific question.



          I will call the induced map $f^*$ to distinguish it from $f.$ I'll also call the dimension $p$ instead of $n.$



          It suffices to show $f^*$ is $C^1$ for matrices with eigenvalues in a given bounded interval $J.$ Approximate $f$ by polynomials $f_n$ such that $sup_xin J|f(x)-f_n(x)|to 0$ and $sup_xin J|f'(x)-f_n'(x)|to 0.$ Since $f_n$ is analytic, $f^*_n$ can be evaluated using resolvents:



          $$f_n^*(X) = frac12pi iint_C f_n(z)(z I_p - X)^-1 dz$$
          where $C$ is an anticlockwise circle in the complex plane with $J$ in its interior. For $HinmathrmSym(p),$



          beginalign*
          f_n^*(X+H)
          &= frac12pi iint_C f_n(z)(z I_p - X-H)^-1 dz\
          &= frac12pi iint_C f_n(z)(z I_p - X)^-1+f_n(z)(z I_p - X)^-1H(z I_p - X)^-1 +dots dz\
          &= frac12pi iint_C f_n(z)sum_lambda(z-lambda)^-1P_lambda +f_n(z)sum_lambda_1,lambda_2(z-lambda_1)^-1(z-lambda_2)^-1P_lambda_1HP_lambda_2+dots dz\
          &= f_n^*(X)+sum_lambda_1,lambda_2 P_lambda_1 H P_lambda_2int_0^1 f'_n(tlambda_1+(1-t)lambda_2)+dots dt
          endalign*



          The second equality uses the Taylor expansion $$(A-H)^-1=A^-1+A^-1HA^-1+dots$$ with $A=z I_p-X.$
          The third equality uses $(zI_p - X)^-1=sum_lambda (z-lambda)^-1 P_lambda.$ The fourth equality uses $int_C f_n(z)(z-lambda)^-1(z-mu)^-1dz =int_0^1 f'_n(tlambda+(1-t)mu)dt.$



          This gives a bound



          $$|Df^*_n(X)H| leq c_p|H|cdot sup_xin J|f'_n(x)-f_n'(x)|$$



          for some constant $c_p>0,$ where $|cdot|$ is any matrix norm. This shows that $f^*$ can be approximated arbitrarily well in the $C^1$ norm, which means it's $C^1.$






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
            $endgroup$
            – Mizar
            Apr 6 at 18:15










          • $begingroup$
            Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
            $endgroup$
            – Mizar
            Apr 7 at 15:21










          • $begingroup$
            The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
            $endgroup$
            – Mizar
            Apr 7 at 15:25


















          0












          $begingroup$

          Yes. To show that f(A) is n-times differentiable at A=B, simply interpolate f by a polynomial P so that P and its derivatives up to order n agree with f on the spectrum of B. Clearly P(A) is n-times differentiable, and it isn't too much work to show that f and P have the same nth derivative.






          share|cite|improve this answer








          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$












          • $begingroup$
            Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
            $endgroup$
            – Mizar
            Apr 6 at 23:00












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327330%2fsmoothness-of-finite-dimensional-functional-calculus%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          Yes. The can be derived from the resolvent formalism.



          I'll just do the $C^1$ case and leave higher derivatives as an exercise - ask if it's not clear how to generalize. I am basically using formula (2.7) of "On differentiability of symmetric matrix valued functions", Alexander Shapiro, http://www.optimization-online.org/DB_HTML/2002/07/499.html. (I think there's a typo in the middle case of the display preceeding (2.7): $f(mu_j)/(mu_j-mu_k)$ should be $(f(mu_j)-f(mu_k))/(mu_j-mu_k).$) Shapiro's paper references "(cf., [4])", where [4] is the 600-page textbook "Perturbation Theory for Linear Operators" by T. Kato, but I don't know if that is helpful for this specific question.



          I will call the induced map $f^*$ to distinguish it from $f.$ I'll also call the dimension $p$ instead of $n.$



          It suffices to show $f^*$ is $C^1$ for matrices with eigenvalues in a given bounded interval $J.$ Approximate $f$ by polynomials $f_n$ such that $sup_xin J|f(x)-f_n(x)|to 0$ and $sup_xin J|f'(x)-f_n'(x)|to 0.$ Since $f_n$ is analytic, $f^*_n$ can be evaluated using resolvents:



          $$f_n^*(X) = frac12pi iint_C f_n(z)(z I_p - X)^-1 dz$$
          where $C$ is an anticlockwise circle in the complex plane with $J$ in its interior. For $HinmathrmSym(p),$



          beginalign*
          f_n^*(X+H)
          &= frac12pi iint_C f_n(z)(z I_p - X-H)^-1 dz\
          &= frac12pi iint_C f_n(z)(z I_p - X)^-1+f_n(z)(z I_p - X)^-1H(z I_p - X)^-1 +dots dz\
          &= frac12pi iint_C f_n(z)sum_lambda(z-lambda)^-1P_lambda +f_n(z)sum_lambda_1,lambda_2(z-lambda_1)^-1(z-lambda_2)^-1P_lambda_1HP_lambda_2+dots dz\
          &= f_n^*(X)+sum_lambda_1,lambda_2 P_lambda_1 H P_lambda_2int_0^1 f'_n(tlambda_1+(1-t)lambda_2)+dots dt
          endalign*



          The second equality uses the Taylor expansion $$(A-H)^-1=A^-1+A^-1HA^-1+dots$$ with $A=z I_p-X.$
          The third equality uses $(zI_p - X)^-1=sum_lambda (z-lambda)^-1 P_lambda.$ The fourth equality uses $int_C f_n(z)(z-lambda)^-1(z-mu)^-1dz =int_0^1 f'_n(tlambda+(1-t)mu)dt.$



          This gives a bound



          $$|Df^*_n(X)H| leq c_p|H|cdot sup_xin J|f'_n(x)-f_n'(x)|$$



          for some constant $c_p>0,$ where $|cdot|$ is any matrix norm. This shows that $f^*$ can be approximated arbitrarily well in the $C^1$ norm, which means it's $C^1.$






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
            $endgroup$
            – Mizar
            Apr 6 at 18:15










          • $begingroup$
            Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
            $endgroup$
            – Mizar
            Apr 7 at 15:21










          • $begingroup$
            The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
            $endgroup$
            – Mizar
            Apr 7 at 15:25















          9












          $begingroup$

          Yes. The can be derived from the resolvent formalism.



          I'll just do the $C^1$ case and leave higher derivatives as an exercise - ask if it's not clear how to generalize. I am basically using formula (2.7) of "On differentiability of symmetric matrix valued functions", Alexander Shapiro, http://www.optimization-online.org/DB_HTML/2002/07/499.html. (I think there's a typo in the middle case of the display preceeding (2.7): $f(mu_j)/(mu_j-mu_k)$ should be $(f(mu_j)-f(mu_k))/(mu_j-mu_k).$) Shapiro's paper references "(cf., [4])", where [4] is the 600-page textbook "Perturbation Theory for Linear Operators" by T. Kato, but I don't know if that is helpful for this specific question.



          I will call the induced map $f^*$ to distinguish it from $f.$ I'll also call the dimension $p$ instead of $n.$



          It suffices to show $f^*$ is $C^1$ for matrices with eigenvalues in a given bounded interval $J.$ Approximate $f$ by polynomials $f_n$ such that $sup_xin J|f(x)-f_n(x)|to 0$ and $sup_xin J|f'(x)-f_n'(x)|to 0.$ Since $f_n$ is analytic, $f^*_n$ can be evaluated using resolvents:



          $$f_n^*(X) = frac12pi iint_C f_n(z)(z I_p - X)^-1 dz$$
          where $C$ is an anticlockwise circle in the complex plane with $J$ in its interior. For $HinmathrmSym(p),$



          beginalign*
          f_n^*(X+H)
          &= frac12pi iint_C f_n(z)(z I_p - X-H)^-1 dz\
          &= frac12pi iint_C f_n(z)(z I_p - X)^-1+f_n(z)(z I_p - X)^-1H(z I_p - X)^-1 +dots dz\
          &= frac12pi iint_C f_n(z)sum_lambda(z-lambda)^-1P_lambda +f_n(z)sum_lambda_1,lambda_2(z-lambda_1)^-1(z-lambda_2)^-1P_lambda_1HP_lambda_2+dots dz\
          &= f_n^*(X)+sum_lambda_1,lambda_2 P_lambda_1 H P_lambda_2int_0^1 f'_n(tlambda_1+(1-t)lambda_2)+dots dt
          endalign*



          The second equality uses the Taylor expansion $$(A-H)^-1=A^-1+A^-1HA^-1+dots$$ with $A=z I_p-X.$
          The third equality uses $(zI_p - X)^-1=sum_lambda (z-lambda)^-1 P_lambda.$ The fourth equality uses $int_C f_n(z)(z-lambda)^-1(z-mu)^-1dz =int_0^1 f'_n(tlambda+(1-t)mu)dt.$



          This gives a bound



          $$|Df^*_n(X)H| leq c_p|H|cdot sup_xin J|f'_n(x)-f_n'(x)|$$



          for some constant $c_p>0,$ where $|cdot|$ is any matrix norm. This shows that $f^*$ can be approximated arbitrarily well in the $C^1$ norm, which means it's $C^1.$






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
            $endgroup$
            – Mizar
            Apr 6 at 18:15










          • $begingroup$
            Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
            $endgroup$
            – Mizar
            Apr 7 at 15:21










          • $begingroup$
            The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
            $endgroup$
            – Mizar
            Apr 7 at 15:25













          9












          9








          9





          $begingroup$

          Yes. The can be derived from the resolvent formalism.



          I'll just do the $C^1$ case and leave higher derivatives as an exercise - ask if it's not clear how to generalize. I am basically using formula (2.7) of "On differentiability of symmetric matrix valued functions", Alexander Shapiro, http://www.optimization-online.org/DB_HTML/2002/07/499.html. (I think there's a typo in the middle case of the display preceeding (2.7): $f(mu_j)/(mu_j-mu_k)$ should be $(f(mu_j)-f(mu_k))/(mu_j-mu_k).$) Shapiro's paper references "(cf., [4])", where [4] is the 600-page textbook "Perturbation Theory for Linear Operators" by T. Kato, but I don't know if that is helpful for this specific question.



          I will call the induced map $f^*$ to distinguish it from $f.$ I'll also call the dimension $p$ instead of $n.$



          It suffices to show $f^*$ is $C^1$ for matrices with eigenvalues in a given bounded interval $J.$ Approximate $f$ by polynomials $f_n$ such that $sup_xin J|f(x)-f_n(x)|to 0$ and $sup_xin J|f'(x)-f_n'(x)|to 0.$ Since $f_n$ is analytic, $f^*_n$ can be evaluated using resolvents:



          $$f_n^*(X) = frac12pi iint_C f_n(z)(z I_p - X)^-1 dz$$
          where $C$ is an anticlockwise circle in the complex plane with $J$ in its interior. For $HinmathrmSym(p),$



          beginalign*
          f_n^*(X+H)
          &= frac12pi iint_C f_n(z)(z I_p - X-H)^-1 dz\
          &= frac12pi iint_C f_n(z)(z I_p - X)^-1+f_n(z)(z I_p - X)^-1H(z I_p - X)^-1 +dots dz\
          &= frac12pi iint_C f_n(z)sum_lambda(z-lambda)^-1P_lambda +f_n(z)sum_lambda_1,lambda_2(z-lambda_1)^-1(z-lambda_2)^-1P_lambda_1HP_lambda_2+dots dz\
          &= f_n^*(X)+sum_lambda_1,lambda_2 P_lambda_1 H P_lambda_2int_0^1 f'_n(tlambda_1+(1-t)lambda_2)+dots dt
          endalign*



          The second equality uses the Taylor expansion $$(A-H)^-1=A^-1+A^-1HA^-1+dots$$ with $A=z I_p-X.$
          The third equality uses $(zI_p - X)^-1=sum_lambda (z-lambda)^-1 P_lambda.$ The fourth equality uses $int_C f_n(z)(z-lambda)^-1(z-mu)^-1dz =int_0^1 f'_n(tlambda+(1-t)mu)dt.$



          This gives a bound



          $$|Df^*_n(X)H| leq c_p|H|cdot sup_xin J|f'_n(x)-f_n'(x)|$$



          for some constant $c_p>0,$ where $|cdot|$ is any matrix norm. This shows that $f^*$ can be approximated arbitrarily well in the $C^1$ norm, which means it's $C^1.$






          share|cite|improve this answer









          $endgroup$



          Yes. The can be derived from the resolvent formalism.



          I'll just do the $C^1$ case and leave higher derivatives as an exercise - ask if it's not clear how to generalize. I am basically using formula (2.7) of "On differentiability of symmetric matrix valued functions", Alexander Shapiro, http://www.optimization-online.org/DB_HTML/2002/07/499.html. (I think there's a typo in the middle case of the display preceeding (2.7): $f(mu_j)/(mu_j-mu_k)$ should be $(f(mu_j)-f(mu_k))/(mu_j-mu_k).$) Shapiro's paper references "(cf., [4])", where [4] is the 600-page textbook "Perturbation Theory for Linear Operators" by T. Kato, but I don't know if that is helpful for this specific question.



          I will call the induced map $f^*$ to distinguish it from $f.$ I'll also call the dimension $p$ instead of $n.$



          It suffices to show $f^*$ is $C^1$ for matrices with eigenvalues in a given bounded interval $J.$ Approximate $f$ by polynomials $f_n$ such that $sup_xin J|f(x)-f_n(x)|to 0$ and $sup_xin J|f'(x)-f_n'(x)|to 0.$ Since $f_n$ is analytic, $f^*_n$ can be evaluated using resolvents:



          $$f_n^*(X) = frac12pi iint_C f_n(z)(z I_p - X)^-1 dz$$
          where $C$ is an anticlockwise circle in the complex plane with $J$ in its interior. For $HinmathrmSym(p),$



          beginalign*
          f_n^*(X+H)
          &= frac12pi iint_C f_n(z)(z I_p - X-H)^-1 dz\
          &= frac12pi iint_C f_n(z)(z I_p - X)^-1+f_n(z)(z I_p - X)^-1H(z I_p - X)^-1 +dots dz\
          &= frac12pi iint_C f_n(z)sum_lambda(z-lambda)^-1P_lambda +f_n(z)sum_lambda_1,lambda_2(z-lambda_1)^-1(z-lambda_2)^-1P_lambda_1HP_lambda_2+dots dz\
          &= f_n^*(X)+sum_lambda_1,lambda_2 P_lambda_1 H P_lambda_2int_0^1 f'_n(tlambda_1+(1-t)lambda_2)+dots dt
          endalign*



          The second equality uses the Taylor expansion $$(A-H)^-1=A^-1+A^-1HA^-1+dots$$ with $A=z I_p-X.$
          The third equality uses $(zI_p - X)^-1=sum_lambda (z-lambda)^-1 P_lambda.$ The fourth equality uses $int_C f_n(z)(z-lambda)^-1(z-mu)^-1dz =int_0^1 f'_n(tlambda+(1-t)mu)dt.$



          This gives a bound



          $$|Df^*_n(X)H| leq c_p|H|cdot sup_xin J|f'_n(x)-f_n'(x)|$$



          for some constant $c_p>0,$ where $|cdot|$ is any matrix norm. This shows that $f^*$ can be approximated arbitrarily well in the $C^1$ norm, which means it's $C^1.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 6 at 17:25









          DapDap

          94826




          94826







          • 1




            $begingroup$
            Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
            $endgroup$
            – Mizar
            Apr 6 at 18:15










          • $begingroup$
            Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
            $endgroup$
            – Mizar
            Apr 7 at 15:21










          • $begingroup$
            The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
            $endgroup$
            – Mizar
            Apr 7 at 15:25












          • 1




            $begingroup$
            Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
            $endgroup$
            – Mizar
            Apr 6 at 18:15










          • $begingroup$
            Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
            $endgroup$
            – Mizar
            Apr 7 at 15:21










          • $begingroup$
            The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
            $endgroup$
            – Mizar
            Apr 7 at 15:25







          1




          1




          $begingroup$
          Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
          $endgroup$
          – Mizar
          Apr 6 at 18:15




          $begingroup$
          Excellent! I see how to generalize it to higher derivatives. I am amazed by the speed of your answer :-)
          $endgroup$
          – Mizar
          Apr 6 at 18:15












          $begingroup$
          Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
          $endgroup$
          – Mizar
          Apr 7 at 15:21




          $begingroup$
          Higher derivative estimates follow from the formula $sum_j=0^kfracf(lambda_j)prod_ellneq j(lambda_j-lambda_ell)=frac1k!int_Delta_kf^(k)(sum_jt_jlambda_j),dt_0cdots dt_k$, $Delta_k$ being the standard simplex $t_jge 0,sum t_j=1$ (assuming wlog the $lambda_j$'s are distinct).
          $endgroup$
          – Mizar
          Apr 7 at 15:21












          $begingroup$
          The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
          $endgroup$
          – Mizar
          Apr 7 at 15:25




          $begingroup$
          The formula, in turn, is easy to prove by induction: we can subtract $f(lambda_0)$ from each numerator in the left-hand side (thanks to this: math.stackexchange.com/questions/104262/…) and obtain $LHS=sum_j=1^kint_0^1fracf'(t_0lambda_0+(1-t_0)lambda_j)prod_ellneq j,ell>0(lambda_j-lambda_ell)$. We are done applying induction with $g:=f'(t_0lambda_0+(1-t_0)z)$ in place of $f(z)$ and noticing $g^(k-1)(z)=(1-t_0)^k-1f^(k)(t_0lambda_0+(1-t_0)z)$.
          $endgroup$
          – Mizar
          Apr 7 at 15:25











          0












          $begingroup$

          Yes. To show that f(A) is n-times differentiable at A=B, simply interpolate f by a polynomial P so that P and its derivatives up to order n agree with f on the spectrum of B. Clearly P(A) is n-times differentiable, and it isn't too much work to show that f and P have the same nth derivative.






          share|cite|improve this answer








          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$












          • $begingroup$
            Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
            $endgroup$
            – Mizar
            Apr 6 at 23:00
















          0












          $begingroup$

          Yes. To show that f(A) is n-times differentiable at A=B, simply interpolate f by a polynomial P so that P and its derivatives up to order n agree with f on the spectrum of B. Clearly P(A) is n-times differentiable, and it isn't too much work to show that f and P have the same nth derivative.






          share|cite|improve this answer








          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$












          • $begingroup$
            Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
            $endgroup$
            – Mizar
            Apr 6 at 23:00














          0












          0








          0





          $begingroup$

          Yes. To show that f(A) is n-times differentiable at A=B, simply interpolate f by a polynomial P so that P and its derivatives up to order n agree with f on the spectrum of B. Clearly P(A) is n-times differentiable, and it isn't too much work to show that f and P have the same nth derivative.






          share|cite|improve this answer








          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$



          Yes. To show that f(A) is n-times differentiable at A=B, simply interpolate f by a polynomial P so that P and its derivatives up to order n agree with f on the spectrum of B. Clearly P(A) is n-times differentiable, and it isn't too much work to show that f and P have the same nth derivative.







          share|cite|improve this answer








          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          share|cite|improve this answer



          share|cite|improve this answer






          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          answered Apr 6 at 20:36









          B ChinB Chin

          1




          1




          New contributor




          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          New contributor





          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          B Chin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.











          • $begingroup$
            Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
            $endgroup$
            – Mizar
            Apr 6 at 23:00

















          • $begingroup$
            Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
            $endgroup$
            – Mizar
            Apr 6 at 23:00
















          $begingroup$
          Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
          $endgroup$
          – Mizar
          Apr 6 at 23:00





          $begingroup$
          Yeah, I thought about this strategy, but it's not so clear why this gives $C^n$ regularity rather than just a Taylor approximation of degree $n$ at each $A$. (If one manages to infer such an approximation exists with coefficients depending continuously on $A$, then one could invoke this result: mathoverflow.net/questions/88501/converse-of-taylors-theorem)
          $endgroup$
          – Mizar
          Apr 6 at 23:00


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327330%2fsmoothness-of-finite-dimensional-functional-calculus%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020