Prove that NP is closed under karp reduction? The 2019 Stack Overflow Developer Survey Results Are InSpace(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
How to manage monthly salary
Time travel alters history but people keep saying nothing's changed
How to deal with fear of taking dependencies
What do hard-Brexiteers want with respect to the Irish border?
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
Falsification in Math vs Science
How to save as into a customized destination on macOS?
Does a dangling wire really electrocute me if I'm standing in water?
Feature engineering suggestion required
Are there incongruent pythagorean triangles with the same perimeter and same area?
FPGA - DIY Programming
Did 3000BC Egyptians use meteoric iron weapons?
Output the Arecibo Message
Button changing it's text & action. Good or terrible?
One word riddle: Vowel in the middle
Delete all lines which don't have n characters before delimiter
Do these rules for Critical Successes and Critical Failures seem fair?
Can you compress metal and what would be the consequences?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Identify boardgame from Big movie
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
How to support a colleague who finds meetings extremely tiring?
Prove that NP is closed under karp reduction?
The 2019 Stack Overflow Developer Survey Results Are InSpace(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
complexity-theory
New contributor
New contributor
New contributor
asked Apr 6 at 19:02
Ankit BahlAnkit Bahl
965
965
New contributor
New contributor
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
4
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
I was able to figure it out. In case anyone (mans in ECE 406) was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
edited yesterday
New contributor
answered Apr 6 at 20:05
Ankit BahlAnkit Bahl
965
965
New contributor
New contributor
add a comment |
add a comment |
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06