Uniform convergence of generalised Fourier seriesConvergence of Fourier Series of $L^1$ FunctionsConvergence of Fourier series in L^infty-normFejer's theorem and convergence of Fourier series in measureGeneralized Stone Weierstrass theoremAre weak and strong convergence of sequences not equivalent?On the convergence of the the function series $sum_n=0^infty(-1)^nfracf^(n)(x)n!x^n$In what ways is the standard Fourier basis optimal?Integrating a series expansion of $mboxfrac(x)lfloor xrfloor$ coming from Fourier series of sawtooth functionFourier basis for sub-Gaussian spaces?Convergence of Eigenvalues and Eigenvectors for Uniformly Form-Bounded Operators

Uniform convergence of generalised Fourier series


Convergence of Fourier Series of $L^1$ FunctionsConvergence of Fourier series in L^infty-normFejer's theorem and convergence of Fourier series in measureGeneralized Stone Weierstrass theoremAre weak and strong convergence of sequences not equivalent?On the convergence of the the function series $sum_n=0^infty(-1)^nfracf^(n)(x)n!x^n$In what ways is the standard Fourier basis optimal?Integrating a series expansion of $mboxfrac(x)lfloor xrfloor$ coming from Fourier series of sawtooth functionFourier basis for sub-Gaussian spaces?Convergence of Eigenvalues and Eigenvectors for Uniformly Form-Bounded Operators













3












$begingroup$


Suppose $u_n$ is an orthonormal basis of smooth functions on $S^1$.



Does there exist a smooth function $u$ such that the generalised Fourier series
$$u=sum_ninmathbbN langle u,u_nrangle u_n $$
does not converge uniformly?



We of course have uniform convergence for the standard Fourier basis by integration by parts, but I cannot find a counterexample (or a proof of uniform convergence) for the general case.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:40










  • $begingroup$
    Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
    $endgroup$
    – Goonfiend
    May 16 at 3:46











  • $begingroup$
    Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:48











  • $begingroup$
    Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
    $endgroup$
    – Goonfiend
    May 16 at 3:52















3












$begingroup$


Suppose $u_n$ is an orthonormal basis of smooth functions on $S^1$.



Does there exist a smooth function $u$ such that the generalised Fourier series
$$u=sum_ninmathbbN langle u,u_nrangle u_n $$
does not converge uniformly?



We of course have uniform convergence for the standard Fourier basis by integration by parts, but I cannot find a counterexample (or a proof of uniform convergence) for the general case.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:40










  • $begingroup$
    Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
    $endgroup$
    – Goonfiend
    May 16 at 3:46











  • $begingroup$
    Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:48











  • $begingroup$
    Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
    $endgroup$
    – Goonfiend
    May 16 at 3:52













3












3








3





$begingroup$


Suppose $u_n$ is an orthonormal basis of smooth functions on $S^1$.



Does there exist a smooth function $u$ such that the generalised Fourier series
$$u=sum_ninmathbbN langle u,u_nrangle u_n $$
does not converge uniformly?



We of course have uniform convergence for the standard Fourier basis by integration by parts, but I cannot find a counterexample (or a proof of uniform convergence) for the general case.










share|cite|improve this question









$endgroup$




Suppose $u_n$ is an orthonormal basis of smooth functions on $S^1$.



Does there exist a smooth function $u$ such that the generalised Fourier series
$$u=sum_ninmathbbN langle u,u_nrangle u_n $$
does not converge uniformly?



We of course have uniform convergence for the standard Fourier basis by integration by parts, but I cannot find a counterexample (or a proof of uniform convergence) for the general case.







fa.functional-analysis fourier-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 16 at 3:31









GoonfiendGoonfiend

1304




1304







  • 1




    $begingroup$
    I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:40










  • $begingroup$
    Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
    $endgroup$
    – Goonfiend
    May 16 at 3:46











  • $begingroup$
    Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:48











  • $begingroup$
    Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
    $endgroup$
    – Goonfiend
    May 16 at 3:52












  • 1




    $begingroup$
    I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:40










  • $begingroup$
    Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
    $endgroup$
    – Goonfiend
    May 16 at 3:46











  • $begingroup$
    Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
    $endgroup$
    – Nate Eldredge
    May 16 at 3:48











  • $begingroup$
    Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
    $endgroup$
    – Goonfiend
    May 16 at 3:52







1




1




$begingroup$
I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
$endgroup$
– Nate Eldredge
May 16 at 3:40




$begingroup$
I'm not quite sure where the quantifiers go in your question; but, for example, if we fix some point $p in S^1$, then the set of smooth functions vanishing at $p$ is dense in $L^2$, so we can find an orthonormal basis $u_n$ consisting entirely of such functions. If $u(p) ne 0$ then the series will not even converge pointwise.
$endgroup$
– Nate Eldredge
May 16 at 3:40












$begingroup$
Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
$endgroup$
– Goonfiend
May 16 at 3:46





$begingroup$
Thanks for your answer Nate. I tried to make a similar idea work, but ran into problems establishing the existence of a smooth orthonormal base of such functions (as opposed to merely $L^2$). Is this obvious?
$endgroup$
– Goonfiend
May 16 at 3:46













$begingroup$
Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
$endgroup$
– Nate Eldredge
May 16 at 3:48





$begingroup$
Let $E$ be the set of such functions. Being a subset of the separable metric space $L^2$, $E$ is separable, so we can find a sequence $v_1, v_2, dots$ which is dense in $E$ and therefore also dense in $L^2$. Now apply Gram-Schmidt to the sequence $v_n$. The resulting sequence $u_n$ will be orthonormal, and its linear span will be the same as that of the $v_n$, which is dense in $L^2$.
$endgroup$
– Nate Eldredge
May 16 at 3:48













$begingroup$
Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
$endgroup$
– Goonfiend
May 16 at 3:52




$begingroup$
Ah of course, this was a silly question. Thank you. If you make that comment an answer I can accept it.
$endgroup$
– Goonfiend
May 16 at 3:52










1 Answer
1






active

oldest

votes


















6












$begingroup$

The series need not converge uniformly, nor even pointwise everywhere.



For instance, fix $x in S^1$ and consider the space $C^infty_x$ of smooth functions that vanish at $x$. This is a dense subspace of $L^2(S^1)$, so by choosing a countable dense subset of $C^infty_x$ and applying Gram-Schmidt, we can find a sequence $u_1, u_2, dots in C^infty_x$ which is an orthonormal basis for $L^2(S^1)$. Then if $u(x) ne 0$, the series evaluated at $x$ converges to 0, not to $u(x)$.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f331643%2funiform-convergence-of-generalised-fourier-series%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The series need not converge uniformly, nor even pointwise everywhere.



    For instance, fix $x in S^1$ and consider the space $C^infty_x$ of smooth functions that vanish at $x$. This is a dense subspace of $L^2(S^1)$, so by choosing a countable dense subset of $C^infty_x$ and applying Gram-Schmidt, we can find a sequence $u_1, u_2, dots in C^infty_x$ which is an orthonormal basis for $L^2(S^1)$. Then if $u(x) ne 0$, the series evaluated at $x$ converges to 0, not to $u(x)$.






    share|cite|improve this answer









    $endgroup$

















      6












      $begingroup$

      The series need not converge uniformly, nor even pointwise everywhere.



      For instance, fix $x in S^1$ and consider the space $C^infty_x$ of smooth functions that vanish at $x$. This is a dense subspace of $L^2(S^1)$, so by choosing a countable dense subset of $C^infty_x$ and applying Gram-Schmidt, we can find a sequence $u_1, u_2, dots in C^infty_x$ which is an orthonormal basis for $L^2(S^1)$. Then if $u(x) ne 0$, the series evaluated at $x$ converges to 0, not to $u(x)$.






      share|cite|improve this answer









      $endgroup$















        6












        6








        6





        $begingroup$

        The series need not converge uniformly, nor even pointwise everywhere.



        For instance, fix $x in S^1$ and consider the space $C^infty_x$ of smooth functions that vanish at $x$. This is a dense subspace of $L^2(S^1)$, so by choosing a countable dense subset of $C^infty_x$ and applying Gram-Schmidt, we can find a sequence $u_1, u_2, dots in C^infty_x$ which is an orthonormal basis for $L^2(S^1)$. Then if $u(x) ne 0$, the series evaluated at $x$ converges to 0, not to $u(x)$.






        share|cite|improve this answer









        $endgroup$



        The series need not converge uniformly, nor even pointwise everywhere.



        For instance, fix $x in S^1$ and consider the space $C^infty_x$ of smooth functions that vanish at $x$. This is a dense subspace of $L^2(S^1)$, so by choosing a countable dense subset of $C^infty_x$ and applying Gram-Schmidt, we can find a sequence $u_1, u_2, dots in C^infty_x$ which is an orthonormal basis for $L^2(S^1)$. Then if $u(x) ne 0$, the series evaluated at $x$ converges to 0, not to $u(x)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 16 at 3:56









        Nate EldredgeNate Eldredge

        20.7k374119




        20.7k374119



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f331643%2funiform-convergence-of-generalised-fourier-series%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020