Why is it harder to turn a motor/generator with shorted terminals?24V H-Bridge DC motor, why voltage drop to 3v if motor connecteddriving a synchronous motor as a generatorRotate BLDC motor with Clark and Park transformWhy does the stator field rotate at the same speed as the rotor field in a synchronous generator?How to allow a motor to free spin?Torque control of a BLDC motor acting as a generatorCan a BLDC generator power another identical brushless motor?gear motor can be used as generatorDc motor as torque transducer for BLDC motorWhy does shorting the phases of a BLDC motor cause it to lock?

Multi tool use
Multi tool use

How did these characters "suit up" so quickly?

Can a person survive on blood in place of water?

Did 20% of US soldiers in Vietnam use heroin, 95% of whom quit afterwards?

USPS Back Room - Trespassing?

Looking for a soft substance that doesn't dissolve underwater

Popcorn is the only acceptable snack to consume while watching a movie

How strong are Wi-Fi signals?

Grammar Question Regarding "Are the" or "Is the" When Referring to Something that May or May not be Plural

How should I introduce map drawing to my players?

Caught student / friend cheating on the final exam that I proctored

Which European Languages are not Indo-European?

What are these arcade games in Ghostbusters 1984?

How to use libraries with delays inside within a time critical STM32 HAL application?

Why aren't space telescopes put in GEO?

Why does this if-statement combining assignment and an equality check return true?

Is the field of q-series 'dead'?

Python program to take in two strings and print the larger string

What is the object moving across the ceiling in this stock footage?

Count rotary dial pulses in a phone number (including letters)

In general, would I need to season a meat when making a sauce?

What is a Centaur Thief's climbing speed?

Should I disclose a colleague's illness (that I should not know) when others badmouth him

Where is the logic in castrating fighters?

Why is this Simple Puzzle impossible to solve?



Why is it harder to turn a motor/generator with shorted terminals?


24V H-Bridge DC motor, why voltage drop to 3v if motor connecteddriving a synchronous motor as a generatorRotate BLDC motor with Clark and Park transformWhy does the stator field rotate at the same speed as the rotor field in a synchronous generator?How to allow a motor to free spin?Torque control of a BLDC motor acting as a generatorCan a BLDC generator power another identical brushless motor?gear motor can be used as generatorDc motor as torque transducer for BLDC motorWhy does shorting the phases of a BLDC motor cause it to lock?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








14












$begingroup$


The shaft of an unconnected motor is easy to rotate relative to a motor with shorted terminals. If a resistive load is connected to the terminals, the turning difficulty is somewhere in between.



Why is this? (I'm using a BLDC motor.)










share|improve this question











$endgroup$







  • 4




    $begingroup$
    Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
    $endgroup$
    – TimWescott
    May 12 at 20:32










  • $begingroup$
    Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
    $endgroup$
    – Neil_UK
    May 12 at 20:33










  • $begingroup$
    @Neil_UK I agree with you. I think that's what I stated in the description.
    $endgroup$
    – abc
    May 12 at 20:36

















14












$begingroup$


The shaft of an unconnected motor is easy to rotate relative to a motor with shorted terminals. If a resistive load is connected to the terminals, the turning difficulty is somewhere in between.



Why is this? (I'm using a BLDC motor.)










share|improve this question











$endgroup$







  • 4




    $begingroup$
    Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
    $endgroup$
    – TimWescott
    May 12 at 20:32










  • $begingroup$
    Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
    $endgroup$
    – Neil_UK
    May 12 at 20:33










  • $begingroup$
    @Neil_UK I agree with you. I think that's what I stated in the description.
    $endgroup$
    – abc
    May 12 at 20:36













14












14








14


2



$begingroup$


The shaft of an unconnected motor is easy to rotate relative to a motor with shorted terminals. If a resistive load is connected to the terminals, the turning difficulty is somewhere in between.



Why is this? (I'm using a BLDC motor.)










share|improve this question











$endgroup$




The shaft of an unconnected motor is easy to rotate relative to a motor with shorted terminals. If a resistive load is connected to the terminals, the turning difficulty is somewhere in between.



Why is this? (I'm using a BLDC motor.)







motor dc-motor generator






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 13 at 15:13







abc

















asked May 12 at 20:24









abcabc

320316




320316







  • 4




    $begingroup$
    Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
    $endgroup$
    – TimWescott
    May 12 at 20:32










  • $begingroup$
    Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
    $endgroup$
    – Neil_UK
    May 12 at 20:33










  • $begingroup$
    @Neil_UK I agree with you. I think that's what I stated in the description.
    $endgroup$
    – abc
    May 12 at 20:36












  • 4




    $begingroup$
    Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
    $endgroup$
    – TimWescott
    May 12 at 20:32










  • $begingroup$
    Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
    $endgroup$
    – Neil_UK
    May 12 at 20:33










  • $begingroup$
    @Neil_UK I agree with you. I think that's what I stated in the description.
    $endgroup$
    – abc
    May 12 at 20:36







4




4




$begingroup$
Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
$endgroup$
– TimWescott
May 12 at 20:32




$begingroup$
Normally electrical power sources are constant voltage, so a load with a smaller resistance is considered to be a larger load. Could you edit your title, please?
$endgroup$
– TimWescott
May 12 at 20:32












$begingroup$
Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
$endgroup$
– Neil_UK
May 12 at 20:33




$begingroup$
Not in my my experience, shorted terminals is more difficult with a permanent magnet DC brushed or BLDC motor. Be specific about the type of motor you are using.
$endgroup$
– Neil_UK
May 12 at 20:33












$begingroup$
@Neil_UK I agree with you. I think that's what I stated in the description.
$endgroup$
– abc
May 12 at 20:36




$begingroup$
@Neil_UK I agree with you. I think that's what I stated in the description.
$endgroup$
– abc
May 12 at 20:36










3 Answers
3






active

oldest

votes


















39












$begingroup$

I have to start with some terminology -- sorry if it's esoteric, but this will bring things into line with how folks talk about this subject.



When you turn a permanent-magnet DC machine*, the armature generates a voltage internally. This is called the "EMF"** of the armature, or the "back EMF" if the machine is running as a motor. This EMF is always generated when the machine turns.



When you run current through a DC machine, it generates a torque. This torque is always generated when the machine turns, regardless of whether it's a motor or a generator.



When you put a resistance on the terminals of a machine and turn its shaft, it generates that EMF. With the resistance connected, this EMF causes a current to flow that's proportional to the EMF divided by the external resistance plus the machine's armature resistance. This current, in turn, generates a torque that resists motion (due to conservation of energy, it must be in a direction to resist motion).



Shorting the machine puts the smallest possible resistance on it -- you can't get lower than 0 without resorting to active circuitry. The back torque in this case is purely a product of the EMF and the armature resistance. Increasing the resistance by putting a resistor on there means less current for the same machine speed, which means less back torque. In the extreme, you have no resistor at all, which means infinite electrical resistance -- this means that the back torque will be from mechanical effects such as friction (and windage, if you're turning it that fast), and possibly mechanical and electromechanical effects as the field magnets work against the iron in the armature.



* I'm calling it a "machine" instead of a "motor" because it can be a motor or a generator, depending on how you use it. But you don't have to change anything internally to change how it's used -- hence, "machine".



** EMF stands for "electromotive force", which is just and older term for "voltage". It seems silly to have two terms, but sometimes it's useful.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
    $endgroup$
    – abc
    May 12 at 21:14










  • $begingroup$
    You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
    $endgroup$
    – Andrey Akhmetov
    May 12 at 23:44






  • 3




    $begingroup$
    @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
    $endgroup$
    – TimWescott
    May 12 at 23:52










  • $begingroup$
    @TimWescott Neat, thanks!
    $endgroup$
    – Andrey Akhmetov
    May 13 at 0:00






  • 1




    $begingroup$
    @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
    $endgroup$
    – AaronD
    May 13 at 4:34


















4












$begingroup$

"applying a resistive load" to a running motor is essentially how an electric brake works. As a first approximation, the torque produced by the motor is proportional to the current, that's turning the motor is harder as the load resistance gets smaller. When you short the terminals, there's only the internal resistance of the motor which limits the current.






share|improve this answer









$endgroup$




















    3












    $begingroup$

    As I read the accepted answer my brain came up with the following simplification, which I think is loosely accurate (?):



    Motors are both dynamos and electromagnets.



    Turning a motor invokes its properties as a dynamo.



    Because the motor's terminals are shorted together, the generated voltage is applied to the motor coil windings, invoking the motor's properties as an electromagnet on its own axle.






    share|improve this answer









    $endgroup$












    • $begingroup$
      Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
      $endgroup$
      – richard1941
      May 16 at 21:30











    Your Answer






    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f438150%2fwhy-is-it-harder-to-turn-a-motor-generator-with-shorted-terminals%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    39












    $begingroup$

    I have to start with some terminology -- sorry if it's esoteric, but this will bring things into line with how folks talk about this subject.



    When you turn a permanent-magnet DC machine*, the armature generates a voltage internally. This is called the "EMF"** of the armature, or the "back EMF" if the machine is running as a motor. This EMF is always generated when the machine turns.



    When you run current through a DC machine, it generates a torque. This torque is always generated when the machine turns, regardless of whether it's a motor or a generator.



    When you put a resistance on the terminals of a machine and turn its shaft, it generates that EMF. With the resistance connected, this EMF causes a current to flow that's proportional to the EMF divided by the external resistance plus the machine's armature resistance. This current, in turn, generates a torque that resists motion (due to conservation of energy, it must be in a direction to resist motion).



    Shorting the machine puts the smallest possible resistance on it -- you can't get lower than 0 without resorting to active circuitry. The back torque in this case is purely a product of the EMF and the armature resistance. Increasing the resistance by putting a resistor on there means less current for the same machine speed, which means less back torque. In the extreme, you have no resistor at all, which means infinite electrical resistance -- this means that the back torque will be from mechanical effects such as friction (and windage, if you're turning it that fast), and possibly mechanical and electromechanical effects as the field magnets work against the iron in the armature.



    * I'm calling it a "machine" instead of a "motor" because it can be a motor or a generator, depending on how you use it. But you don't have to change anything internally to change how it's used -- hence, "machine".



    ** EMF stands for "electromotive force", which is just and older term for "voltage". It seems silly to have two terms, but sometimes it's useful.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
      $endgroup$
      – abc
      May 12 at 21:14










    • $begingroup$
      You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
      $endgroup$
      – Andrey Akhmetov
      May 12 at 23:44






    • 3




      $begingroup$
      @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
      $endgroup$
      – TimWescott
      May 12 at 23:52










    • $begingroup$
      @TimWescott Neat, thanks!
      $endgroup$
      – Andrey Akhmetov
      May 13 at 0:00






    • 1




      $begingroup$
      @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
      $endgroup$
      – AaronD
      May 13 at 4:34















    39












    $begingroup$

    I have to start with some terminology -- sorry if it's esoteric, but this will bring things into line with how folks talk about this subject.



    When you turn a permanent-magnet DC machine*, the armature generates a voltage internally. This is called the "EMF"** of the armature, or the "back EMF" if the machine is running as a motor. This EMF is always generated when the machine turns.



    When you run current through a DC machine, it generates a torque. This torque is always generated when the machine turns, regardless of whether it's a motor or a generator.



    When you put a resistance on the terminals of a machine and turn its shaft, it generates that EMF. With the resistance connected, this EMF causes a current to flow that's proportional to the EMF divided by the external resistance plus the machine's armature resistance. This current, in turn, generates a torque that resists motion (due to conservation of energy, it must be in a direction to resist motion).



    Shorting the machine puts the smallest possible resistance on it -- you can't get lower than 0 without resorting to active circuitry. The back torque in this case is purely a product of the EMF and the armature resistance. Increasing the resistance by putting a resistor on there means less current for the same machine speed, which means less back torque. In the extreme, you have no resistor at all, which means infinite electrical resistance -- this means that the back torque will be from mechanical effects such as friction (and windage, if you're turning it that fast), and possibly mechanical and electromechanical effects as the field magnets work against the iron in the armature.



    * I'm calling it a "machine" instead of a "motor" because it can be a motor or a generator, depending on how you use it. But you don't have to change anything internally to change how it's used -- hence, "machine".



    ** EMF stands for "electromotive force", which is just and older term for "voltage". It seems silly to have two terms, but sometimes it's useful.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
      $endgroup$
      – abc
      May 12 at 21:14










    • $begingroup$
      You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
      $endgroup$
      – Andrey Akhmetov
      May 12 at 23:44






    • 3




      $begingroup$
      @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
      $endgroup$
      – TimWescott
      May 12 at 23:52










    • $begingroup$
      @TimWescott Neat, thanks!
      $endgroup$
      – Andrey Akhmetov
      May 13 at 0:00






    • 1




      $begingroup$
      @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
      $endgroup$
      – AaronD
      May 13 at 4:34













    39












    39








    39





    $begingroup$

    I have to start with some terminology -- sorry if it's esoteric, but this will bring things into line with how folks talk about this subject.



    When you turn a permanent-magnet DC machine*, the armature generates a voltage internally. This is called the "EMF"** of the armature, or the "back EMF" if the machine is running as a motor. This EMF is always generated when the machine turns.



    When you run current through a DC machine, it generates a torque. This torque is always generated when the machine turns, regardless of whether it's a motor or a generator.



    When you put a resistance on the terminals of a machine and turn its shaft, it generates that EMF. With the resistance connected, this EMF causes a current to flow that's proportional to the EMF divided by the external resistance plus the machine's armature resistance. This current, in turn, generates a torque that resists motion (due to conservation of energy, it must be in a direction to resist motion).



    Shorting the machine puts the smallest possible resistance on it -- you can't get lower than 0 without resorting to active circuitry. The back torque in this case is purely a product of the EMF and the armature resistance. Increasing the resistance by putting a resistor on there means less current for the same machine speed, which means less back torque. In the extreme, you have no resistor at all, which means infinite electrical resistance -- this means that the back torque will be from mechanical effects such as friction (and windage, if you're turning it that fast), and possibly mechanical and electromechanical effects as the field magnets work against the iron in the armature.



    * I'm calling it a "machine" instead of a "motor" because it can be a motor or a generator, depending on how you use it. But you don't have to change anything internally to change how it's used -- hence, "machine".



    ** EMF stands for "electromotive force", which is just and older term for "voltage". It seems silly to have two terms, but sometimes it's useful.






    share|improve this answer









    $endgroup$



    I have to start with some terminology -- sorry if it's esoteric, but this will bring things into line with how folks talk about this subject.



    When you turn a permanent-magnet DC machine*, the armature generates a voltage internally. This is called the "EMF"** of the armature, or the "back EMF" if the machine is running as a motor. This EMF is always generated when the machine turns.



    When you run current through a DC machine, it generates a torque. This torque is always generated when the machine turns, regardless of whether it's a motor or a generator.



    When you put a resistance on the terminals of a machine and turn its shaft, it generates that EMF. With the resistance connected, this EMF causes a current to flow that's proportional to the EMF divided by the external resistance plus the machine's armature resistance. This current, in turn, generates a torque that resists motion (due to conservation of energy, it must be in a direction to resist motion).



    Shorting the machine puts the smallest possible resistance on it -- you can't get lower than 0 without resorting to active circuitry. The back torque in this case is purely a product of the EMF and the armature resistance. Increasing the resistance by putting a resistor on there means less current for the same machine speed, which means less back torque. In the extreme, you have no resistor at all, which means infinite electrical resistance -- this means that the back torque will be from mechanical effects such as friction (and windage, if you're turning it that fast), and possibly mechanical and electromechanical effects as the field magnets work against the iron in the armature.



    * I'm calling it a "machine" instead of a "motor" because it can be a motor or a generator, depending on how you use it. But you don't have to change anything internally to change how it's used -- hence, "machine".



    ** EMF stands for "electromotive force", which is just and older term for "voltage". It seems silly to have two terms, but sometimes it's useful.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered May 12 at 20:42









    TimWescottTimWescott

    8,6401719




    8,6401719







    • 1




      $begingroup$
      I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
      $endgroup$
      – abc
      May 12 at 21:14










    • $begingroup$
      You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
      $endgroup$
      – Andrey Akhmetov
      May 12 at 23:44






    • 3




      $begingroup$
      @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
      $endgroup$
      – TimWescott
      May 12 at 23:52










    • $begingroup$
      @TimWescott Neat, thanks!
      $endgroup$
      – Andrey Akhmetov
      May 13 at 0:00






    • 1




      $begingroup$
      @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
      $endgroup$
      – AaronD
      May 13 at 4:34












    • 1




      $begingroup$
      I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
      $endgroup$
      – abc
      May 12 at 21:14










    • $begingroup$
      You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
      $endgroup$
      – Andrey Akhmetov
      May 12 at 23:44






    • 3




      $begingroup$
      @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
      $endgroup$
      – TimWescott
      May 12 at 23:52










    • $begingroup$
      @TimWescott Neat, thanks!
      $endgroup$
      – Andrey Akhmetov
      May 13 at 0:00






    • 1




      $begingroup$
      @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
      $endgroup$
      – AaronD
      May 13 at 4:34







    1




    1




    $begingroup$
    I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
    $endgroup$
    – abc
    May 12 at 21:14




    $begingroup$
    I appreciate the fundamental explanation. I find a lot of information regarding the "whats" of DC motor operation, but the "whys" are harder to come by.
    $endgroup$
    – abc
    May 12 at 21:14












    $begingroup$
    You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
    $endgroup$
    – Andrey Akhmetov
    May 12 at 23:44




    $begingroup$
    You mention active circuitry--are there examples of motor drives that actively introduce current in response to a back EMF to provide better braking than shorting the terminals can provide?
    $endgroup$
    – Andrey Akhmetov
    May 12 at 23:44




    3




    3




    $begingroup$
    @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
    $endgroup$
    – TimWescott
    May 12 at 23:52




    $begingroup$
    @AndreyAkhmetov yes. In fact, it's possible to build an amplifier whose output impedance is negative and equal in magnitude to a motor's armature resistance. Then for the purposes of motor dynamics, the system comes close to acting like a motor with zero-resistance winding. Speed regulation is much (but not perfectly) improved, including regulating down to speed = 0. I'm not sure if it's been used for motor braking, but it was used for a while in the 1970's to regulate the motor speed of cassette tape drives in sorta-high-end consumer audio equipment.
    $endgroup$
    – TimWescott
    May 12 at 23:52












    $begingroup$
    @TimWescott Neat, thanks!
    $endgroup$
    – Andrey Akhmetov
    May 13 at 0:00




    $begingroup$
    @TimWescott Neat, thanks!
    $endgroup$
    – Andrey Akhmetov
    May 13 at 0:00




    1




    1




    $begingroup$
    @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
    $endgroup$
    – AaronD
    May 13 at 4:34




    $begingroup$
    @AndreyAkhmetov If you want a fine level of control, you could do what Tim said, but for a quick-and-dirty method, you could just drive the motor in the opposite direction. (staying mechanically in sync, of course) This also ends up with regenerative braking, so make sure that your upstream circuitry can handle that.
    $endgroup$
    – AaronD
    May 13 at 4:34













    4












    $begingroup$

    "applying a resistive load" to a running motor is essentially how an electric brake works. As a first approximation, the torque produced by the motor is proportional to the current, that's turning the motor is harder as the load resistance gets smaller. When you short the terminals, there's only the internal resistance of the motor which limits the current.






    share|improve this answer









    $endgroup$

















      4












      $begingroup$

      "applying a resistive load" to a running motor is essentially how an electric brake works. As a first approximation, the torque produced by the motor is proportional to the current, that's turning the motor is harder as the load resistance gets smaller. When you short the terminals, there's only the internal resistance of the motor which limits the current.






      share|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        "applying a resistive load" to a running motor is essentially how an electric brake works. As a first approximation, the torque produced by the motor is proportional to the current, that's turning the motor is harder as the load resistance gets smaller. When you short the terminals, there's only the internal resistance of the motor which limits the current.






        share|improve this answer









        $endgroup$



        "applying a resistive load" to a running motor is essentially how an electric brake works. As a first approximation, the torque produced by the motor is proportional to the current, that's turning the motor is harder as the load resistance gets smaller. When you short the terminals, there's only the internal resistance of the motor which limits the current.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered May 13 at 11:11









        Dmitry GrigoryevDmitry Grigoryev

        19k22978




        19k22978





















            3












            $begingroup$

            As I read the accepted answer my brain came up with the following simplification, which I think is loosely accurate (?):



            Motors are both dynamos and electromagnets.



            Turning a motor invokes its properties as a dynamo.



            Because the motor's terminals are shorted together, the generated voltage is applied to the motor coil windings, invoking the motor's properties as an electromagnet on its own axle.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
              $endgroup$
              – richard1941
              May 16 at 21:30















            3












            $begingroup$

            As I read the accepted answer my brain came up with the following simplification, which I think is loosely accurate (?):



            Motors are both dynamos and electromagnets.



            Turning a motor invokes its properties as a dynamo.



            Because the motor's terminals are shorted together, the generated voltage is applied to the motor coil windings, invoking the motor's properties as an electromagnet on its own axle.






            share|improve this answer









            $endgroup$












            • $begingroup$
              Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
              $endgroup$
              – richard1941
              May 16 at 21:30













            3












            3








            3





            $begingroup$

            As I read the accepted answer my brain came up with the following simplification, which I think is loosely accurate (?):



            Motors are both dynamos and electromagnets.



            Turning a motor invokes its properties as a dynamo.



            Because the motor's terminals are shorted together, the generated voltage is applied to the motor coil windings, invoking the motor's properties as an electromagnet on its own axle.






            share|improve this answer









            $endgroup$



            As I read the accepted answer my brain came up with the following simplification, which I think is loosely accurate (?):



            Motors are both dynamos and electromagnets.



            Turning a motor invokes its properties as a dynamo.



            Because the motor's terminals are shorted together, the generated voltage is applied to the motor coil windings, invoking the motor's properties as an electromagnet on its own axle.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered May 13 at 11:20









            i336_i336_

            16210




            16210











            • $begingroup$
              Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
              $endgroup$
              – richard1941
              May 16 at 21:30
















            • $begingroup$
              Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
              $endgroup$
              – richard1941
              May 16 at 21:30















            $begingroup$
            Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
            $endgroup$
            – richard1941
            May 16 at 21:30




            $begingroup$
            Every motor is also a generator. Put a mechanical drag on it, and it draws electrical power. Apply torque (nagative drag), and it delivers electrical power. The first law of thermodynamics is in control.
            $endgroup$
            – richard1941
            May 16 at 21:30

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f438150%2fwhy-is-it-harder-to-turn-a-motor-generator-with-shorted-terminals%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            aeBImS8j,pjou ovXqW WBl7KZ14
            V6I2Gu,TdqGRKd66S cAZozPTSy eJnuhxtU6V

            Popular posts from this blog

            RemoteApp sporadic failureWindows 2008 RemoteAPP client disconnects within a matter of minutesWhat is the minimum version of RDP supported by Server 2012 RDS?How to configure a Remoteapp server to increase stabilityMicrosoft RemoteApp Active SessionRDWeb TS connection broken for some users post RemoteApp certificate changeRemote Desktop Licensing, RemoteAPPRDS 2012 R2 some users are not able to logon after changed date and time on Connection BrokersWhat happens during Remote Desktop logon, and is there any logging?After installing RDS on WinServer 2016 I still can only connect with two users?RD Connection via RDGW to Session host is not connecting

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020