Is it possible to geometrically construct any given real number? [closed]Is $e$ “constructable” with the appropriate tools?Find a complex number geometricallyHow to construct geometrically $sqrt[k]n$ for $k in mathbbZ$ and $k>2$Minimal number of steps to construct $cos(2 pi /n)$Is $e$ “constructable” with the appropriate tools?How to raise a number to a power geometrically.Is it possible to represent imaginary and complex areas geometrically?Another way of proving sqrt 2 is a Real numberHow to draw triangle in plane using Peaucellier inversor?Constructing a complex number geometrically, without putting it in standard form.What is the essential difference between real number and complex number?

How can we delete item permanently without storing in Recycle Bin?

Why is the marginal distribution/marginal probability described as "marginal"?

Why do galaxies collide?

Is it possible to pass a pointer to an operator as an argument like a pointer to a function?

Iterate lines of string variable in bash

How was the blinking terminal cursor invented?

Solenoid fastest possible release - for how long should reversed polarity be applied?

Physically unpleasant work environment

Is Precocious Apprentice enough for Mystic Theurge?

How does this piece of code determine array size without using sizeof( )?

Do we see some Unsullied doing this in S08E05?

How could it be that 80% of townspeople were farmers during the Edo period in Japan?

How to handle professionally if colleagues has referred his relative and asking to take easy while taking interview

Holding rent money for my friend which amounts to over $10k?

What formula to chose a nonlinear formula?

I recently started my machine learning PhD and I have absolutely no idea what I'm doing

Can I pay my credit card?

Why did the soldiers of the North disobey Jon?

How can I fix the label locations on my tikzcd diagram?

"Counterexample" for the Inverse function theorem

Does a non-singular matrix have a large minor with disjoint rows and columns and full rank?

Would a "ring language" be possible?

How to generate a triangular grid from a list of points

SHAKE-128/256 or SHA3-256/512



Is it possible to geometrically construct any given real number? [closed]


Is $e$ “constructable” with the appropriate tools?Find a complex number geometricallyHow to construct geometrically $sqrt[k]n$ for $k in mathbbZ$ and $k>2$Minimal number of steps to construct $cos(2 pi /n)$Is $e$ “constructable” with the appropriate tools?How to raise a number to a power geometrically.Is it possible to represent imaginary and complex areas geometrically?Another way of proving sqrt 2 is a Real numberHow to draw triangle in plane using Peaucellier inversor?Constructing a complex number geometrically, without putting it in standard form.What is the essential difference between real number and complex number?













2












$begingroup$


I know some real numbers, like sqrt(2) can be constructed geometrically. But what about other real numbers, like 'e'? Is it possible to geometrically construct any given real number?










share|cite|improve this question









$endgroup$



closed as too broad by YuiTo Cheng, RRL, Yanior Weg, Cesareo, mrtaurho May 7 at 13:43


Please edit the question to limit it to a specific problem with enough detail to identify an adequate answer. Avoid asking multiple distinct questions at once. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.

















  • $begingroup$
    See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
    $endgroup$
    – 雨が好きな人
    May 5 at 12:23










  • $begingroup$
    You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
    $endgroup$
    – user
    May 5 at 12:32















2












$begingroup$


I know some real numbers, like sqrt(2) can be constructed geometrically. But what about other real numbers, like 'e'? Is it possible to geometrically construct any given real number?










share|cite|improve this question









$endgroup$



closed as too broad by YuiTo Cheng, RRL, Yanior Weg, Cesareo, mrtaurho May 7 at 13:43


Please edit the question to limit it to a specific problem with enough detail to identify an adequate answer. Avoid asking multiple distinct questions at once. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.

















  • $begingroup$
    See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
    $endgroup$
    – 雨が好きな人
    May 5 at 12:23










  • $begingroup$
    You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
    $endgroup$
    – user
    May 5 at 12:32













2












2








2





$begingroup$


I know some real numbers, like sqrt(2) can be constructed geometrically. But what about other real numbers, like 'e'? Is it possible to geometrically construct any given real number?










share|cite|improve this question









$endgroup$




I know some real numbers, like sqrt(2) can be constructed geometrically. But what about other real numbers, like 'e'? Is it possible to geometrically construct any given real number?







geometry analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 5 at 12:16









user15740user15740

1141




1141




closed as too broad by YuiTo Cheng, RRL, Yanior Weg, Cesareo, mrtaurho May 7 at 13:43


Please edit the question to limit it to a specific problem with enough detail to identify an adequate answer. Avoid asking multiple distinct questions at once. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









closed as too broad by YuiTo Cheng, RRL, Yanior Weg, Cesareo, mrtaurho May 7 at 13:43


Please edit the question to limit it to a specific problem with enough detail to identify an adequate answer. Avoid asking multiple distinct questions at once. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • $begingroup$
    See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
    $endgroup$
    – 雨が好きな人
    May 5 at 12:23










  • $begingroup$
    You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
    $endgroup$
    – user
    May 5 at 12:32
















  • $begingroup$
    See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
    $endgroup$
    – 雨が好きな人
    May 5 at 12:23










  • $begingroup$
    You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
    $endgroup$
    – user
    May 5 at 12:32















$begingroup$
See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
$endgroup$
– 雨が好きな人
May 5 at 12:23




$begingroup$
See this question for a discussion of whether $e$ is constructible by means other than what I mentioned.
$endgroup$
– 雨が好きな人
May 5 at 12:23












$begingroup$
You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
$endgroup$
– user
May 5 at 12:32




$begingroup$
You should be precise about the meaning of "geometric construction". With a compass and (unmarked) strightedge even $sqrt[3]2$ is not constructible.
$endgroup$
– user
May 5 at 12:32










2 Answers
2






active

oldest

votes


















8












$begingroup$

No, it is not possible if you are only using a compass and straightedge. See constructible numbers.



$sqrt2$ can be constructed, as you say, but there are other real numbers such as $e$ that cannot. The ancient problem of squaring the circle is impossible precisely because $sqrtpi$ is not a constructible number.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    The set of constructable numbers is the same as the closure of Z to ÷ and sqrt(). That is, you can construct ratios of two given lengths, and you can convert any given rectangle to a square.



    For the polygons, a polygon n can be constructed if the euler totient ø(n) is a power of 2. This means 2^x . 3. 5. 17. 257. 65537.






    share|cite|improve this answer









    $endgroup$



















      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      No, it is not possible if you are only using a compass and straightedge. See constructible numbers.



      $sqrt2$ can be constructed, as you say, but there are other real numbers such as $e$ that cannot. The ancient problem of squaring the circle is impossible precisely because $sqrtpi$ is not a constructible number.






      share|cite|improve this answer











      $endgroup$

















        8












        $begingroup$

        No, it is not possible if you are only using a compass and straightedge. See constructible numbers.



        $sqrt2$ can be constructed, as you say, but there are other real numbers such as $e$ that cannot. The ancient problem of squaring the circle is impossible precisely because $sqrtpi$ is not a constructible number.






        share|cite|improve this answer











        $endgroup$















          8












          8








          8





          $begingroup$

          No, it is not possible if you are only using a compass and straightedge. See constructible numbers.



          $sqrt2$ can be constructed, as you say, but there are other real numbers such as $e$ that cannot. The ancient problem of squaring the circle is impossible precisely because $sqrtpi$ is not a constructible number.






          share|cite|improve this answer











          $endgroup$



          No, it is not possible if you are only using a compass and straightedge. See constructible numbers.



          $sqrt2$ can be constructed, as you say, but there are other real numbers such as $e$ that cannot. The ancient problem of squaring the circle is impossible precisely because $sqrtpi$ is not a constructible number.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited May 5 at 12:24

























          answered May 5 at 12:19









          雨が好きな人雨が好きな人

          2,097317




          2,097317





















              2












              $begingroup$

              The set of constructable numbers is the same as the closure of Z to ÷ and sqrt(). That is, you can construct ratios of two given lengths, and you can convert any given rectangle to a square.



              For the polygons, a polygon n can be constructed if the euler totient ø(n) is a power of 2. This means 2^x . 3. 5. 17. 257. 65537.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                The set of constructable numbers is the same as the closure of Z to ÷ and sqrt(). That is, you can construct ratios of two given lengths, and you can convert any given rectangle to a square.



                For the polygons, a polygon n can be constructed if the euler totient ø(n) is a power of 2. This means 2^x . 3. 5. 17. 257. 65537.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  The set of constructable numbers is the same as the closure of Z to ÷ and sqrt(). That is, you can construct ratios of two given lengths, and you can convert any given rectangle to a square.



                  For the polygons, a polygon n can be constructed if the euler totient ø(n) is a power of 2. This means 2^x . 3. 5. 17. 257. 65537.






                  share|cite|improve this answer









                  $endgroup$



                  The set of constructable numbers is the same as the closure of Z to ÷ and sqrt(). That is, you can construct ratios of two given lengths, and you can convert any given rectangle to a square.



                  For the polygons, a polygon n can be constructed if the euler totient ø(n) is a power of 2. This means 2^x . 3. 5. 17. 257. 65537.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 5 at 12:32









                  wendy.kriegerwendy.krieger

                  5,89311427




                  5,89311427













                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020