128-bit unsigned integerCombining two 32-bit integers into one 64-bit integerArray-like container for uints shorter than 8 bits (Rev 1)Lossy packing 32 bit integer to 16 bitMostly portable 128 by 64 bit divisionPacking and unpacking two 32-bit integers into an unsigned 64-bit integerConcatenate three 16-bit integers in one 64-bit integer with C++Portable safe unsigned integer arithmeticUnsigned integer division ARM Cortex-M0+ AssemblyShifting an 128-bit integer consisting of four 32-bit integersC++ big unsigned integer class

Is it possible for a vehicle to be manufactured without a catalytic converter?

Does Disney no longer produce hand-drawn cartoon films?

Why does the Mishnah use the terms poor person and homeowner when discussing carrying on Shabbat?

Who enforces MPAA rating adherence?

Why am I getting a strange double quote (“) in Open Office instead of the ordinary one (")?

Why not invest in precious metals?

Why can I traceroute to this IP address, but not ping?

How to hide an urban landmark?

The colon does not align with the vdots

Electricity free spaceship

Fermat's statement about the ancients: How serious was he?

How can I get an unreasonable manager to approve time off?

What is the color of artificial intelligence?

Is it expected that a reader will skip parts of what you write?

Thread Pool C++ Implementation

Heap allocation on microcontroller

Why does logistic function use e rather than 2?

Is it possible to fly backward if you have REALLY STRONG headwind?

How to safely destroy (a large quantity of) valid checks?

Overlapping String-Blocks

How can I end combat quickly when the outcome is inevitable?

What ways have you found to get edits from non-LaTeX users?

How to hide rifle during medieval town entrance inspection?

Second (easy access) account in case my bank screws up



128-bit unsigned integer


Combining two 32-bit integers into one 64-bit integerArray-like container for uints shorter than 8 bits (Rev 1)Lossy packing 32 bit integer to 16 bitMostly portable 128 by 64 bit divisionPacking and unpacking two 32-bit integers into an unsigned 64-bit integerConcatenate three 16-bit integers in one 64-bit integer with C++Portable safe unsigned integer arithmeticUnsigned integer division ARM Cortex-M0+ AssemblyShifting an 128-bit integer consisting of four 32-bit integersC++ big unsigned integer class






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








13












$begingroup$


This implements 128-bit unsigned integer using C++14.
It works on MSVC and 32-bit architectures being complementary to the unsigned __int128 type provided by GCC and clang on 64-bit architectures.



// intx: extended precision integer library.
// Copyright 2019 Pawel Bylica.
// Licensed under the Apache License, Version 2.0.

#pragma once

#include <algorithm>
#include <climits>
#include <cstdint>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace intx

template <unsigned N>
struct uint;

/// The 128-bit unsigned integer.
///
/// This type is defined as a specialization of uint<> to easier integration with full intx package,
/// however, uint128 may be used independently.
template <>
struct uint<128>

uint64_t lo = 0;
uint64_t hi = 0;

constexpr uint() noexcept = default;

constexpr uint(uint64_t high, uint64_t low) noexcept : lolow, hihigh

template <typename T,
typename = typename std::enable_if_t<std::is_convertible<T, uint64_t>::value>>
constexpr uint(T x) noexcept : lo(static_cast<uint64_t>(x)) // NOLINT


#ifdef __SIZEOF_INT128__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
constexpr uint(unsigned __int128 x) noexcept // NOLINT
: louint64_t(x), hiuint64_t(x >> 64)


constexpr explicit operator unsigned __int128() const noexcept
lo;

#pragma GCC diagnostic pop
#endif

constexpr explicit operator bool() const noexcept return hi

/// Explicit converting operator for all builtin integral types.
template <typename Int, typename = typename std::enable_if<std::is_integral<Int>::value>::type>
constexpr explicit operator Int() const noexcept

return static_cast<Int>(lo);

;

using uint128 = uint<128>;


/// Linear arithmetic operators.
/// @

constexpr uint128 operator+(uint128 x, uint128 y) noexcept

const auto lo = x.lo + y.lo;
const auto carry = x.lo > lo;
const auto hi = x.hi + y.hi + carry;
return hi, lo;


constexpr uint128 operator+(uint128 x) noexcept

return x;


constexpr uint128 operator-(uint128 x, uint128 y) noexcept

const auto lo = x.lo - y.lo;
const auto borrow = x.lo < lo;
const auto hi = x.hi - y.hi - borrow;
return hi, lo;


constexpr uint128 operator-(uint128 x) noexcept

// Implementing as subtraction is better than ~x + 1.
// Clang9: Perfect.
// GCC8: Does something weird.
return 0 - x;


inline uint128& operator++(uint128& x) noexcept

return x = x + 1;


inline uint128& operator--(uint128& x) noexcept

return x = x - 1;


inline uint128 operator++(uint128& x, int) noexcept

auto ret = x;
++x;
return ret;


inline uint128 operator--(uint128& x, int) noexcept

auto ret = x;
--x;
return ret;


/// Optimized addition.
///
/// This keeps the multiprecision addition until CodeGen so the pattern is not
/// broken during other optimizations.
constexpr uint128 fast_add(uint128 x, uint128 y) noexcept

#ifdef __SIZEOF_INT128__xxx
return (unsigned __int128)x + (unsigned __int128)y;
#else
// Fallback to regular addition.
return x + y;
#endif


/// @


/// Comparison operators.
///
/// In all implementations bitwise operators are used instead of logical ones
/// to avoid branching.
///
/// @

constexpr bool operator==(uint128 x, uint128 y) noexcept

// Clang7: generates perfect xor based code,
// much better than __int128 where it uses vector instructions.
// GCC8: generates a bit worse cmp based code
// although it generates the xor based one for __int128.
return (x.lo == y.lo) & (x.hi == y.hi);


constexpr bool operator!=(uint128 x, uint128 y) noexcept

// Analogous to ==, but == not used directly, because that confuses GCC8.
return (x.lo != y.lo)

constexpr bool operator<(uint128 x, uint128 y) noexcept

// OPT: This should be implemented by checking the borrow of x - y,
// but compilers (GCC8, Clang7)
// have problem with properly optimizing subtraction.
return (x.hi < y.hi)

constexpr bool operator<=(uint128 x, uint128 y) noexcept
(x == y).
return (x.hi < y.hi)

constexpr bool operator>(uint128 x, uint128 y) noexcept

return !(x <= y);


constexpr bool operator>=(uint128 x, uint128 y) noexcept

return !(x < y);


/// @


/// Bitwise operators.
/// @

constexpr uint128 operator~(uint128 x) noexcept

return ~x.hi, ~x.lo;


constexpr uint128 operator


/// Multiplication
/// @

/// Portable full unsigned multiplication 64 x 64 -> 128.
constexpr uint128 constexpr_umul(uint64_t x, uint64_t y) noexcept

uint64_t xl = x & 0xffffffff;
uint64_t xh = x >> 32;
uint64_t yl = y & 0xffffffff;
uint64_t yh = y >> 32;

uint64_t t0 = xl * yl;
uint64_t t1 = xh * yl;
uint64_t t2 = xl * yh;
uint64_t t3 = xh * yh;

uint64_t u1 = t1 + (t0 >> 32);
uint64_t u2 = t2 + (u1 & 0xffffffff);

uint64_t lo = (u2 << 32)

/// Full unsigned multiplication 64 x 64 -> 128.
inline uint128 umul(uint64_t x, uint64_t y) noexcept

#if defined(__SIZEOF_INT128__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
const auto p = static_cast<unsigned __int128>(x) * y;
return uint64_t(p >> 64), uint64_t(p);
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
unsigned __int64 hi;
const auto lo = _umul128(x, y, &hi);
return hi, lo;
#else
return constexpr_umul(x, y);
#endif


inline uint128 operator*(uint128 x, uint128 y) noexcept

auto p = umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


constexpr uint128 constexpr_mul(uint128 x, uint128 y) noexcept

auto p = constexpr_umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


/// @


/// Assignment operators.
/// @

constexpr uint128& operator+=(uint128& x, uint128 y) noexcept

return x = x + y;


constexpr uint128& operator-=(uint128& x, uint128 y) noexcept

return x = x - y;


inline uint128& operator*=(uint128& x, uint128 y) noexcept

return x = x * y;


constexpr uint128& operator


inline unsigned clz(uint32_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse(&most_significant_bit, x);
return 31 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clz(x));
#endif


inline unsigned clz(uint64_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse64(&most_significant_bit, x);
return 63 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clzll(x));
#endif


inline unsigned clz(uint128 x) noexcept
64 : clz(x.hi);



inline uint64_t bswap(uint64_t x) noexcept

#ifdef _MSC_VER
return _byteswap_uint64(x);
#else
return __builtin_bswap64(x);
#endif


inline uint128 bswap(uint128 x) noexcept

return bswap(x.lo), bswap(x.hi);



/// Division.
/// @

template <typename T>
struct div_result

T quot;
T rem;
;

namespace internal

constexpr uint16_t reciprocal_table_item(uint8_t d9) noexcept

return uint16_t(0x7fd00 / (0x100

#define REPEAT4(x)
reciprocal_table_item((x) + 0), reciprocal_table_item((x) + 1),
reciprocal_table_item((x) + 2), reciprocal_table_item((x) + 3)

#define REPEAT32(x)
REPEAT4((x) + 4 * 0), REPEAT4((x) + 4 * 1), REPEAT4((x) + 4 * 2), REPEAT4((x) + 4 * 3),
REPEAT4((x) + 4 * 4), REPEAT4((x) + 4 * 5), REPEAT4((x) + 4 * 6), REPEAT4((x) + 4 * 7)

#define REPEAT256()
REPEAT32(32 * 0), REPEAT32(32 * 1), REPEAT32(32 * 2), REPEAT32(32 * 3), REPEAT32(32 * 4),
REPEAT32(32 * 5), REPEAT32(32 * 6), REPEAT32(32 * 7)

/// Reciprocal lookup table.
constexpr uint16_t reciprocal_table[] = REPEAT256();

#undef REPEAT4
#undef REPEAT32
#undef REPEAT256
// namespace internal

/// Computes the reciprocal (2^128 - 1) / d - 2^64 for normalized d.
///
/// Based on Algorithm 2 from "Improved division by invariant integers".
inline uint64_t reciprocal_2by1(uint64_t d) noexcept

auto d9 = uint8_t(d >> 55);
auto v0 = uint64_tinternal::reciprocal_table[d9];

auto d40 = (d >> 24) + 1;
auto v1 = (v0 << 11) - (v0 * v0 * d40 >> 40) - 1;

auto v2 = (v1 << 13) + (v1 * (0x1000000000000000 - v1 * d40) >> 47);

auto d0 = d % 2;
auto d63 = d / 2 + d0; // ceil(d/2)
auto nd0 = uint64_t(-int64_t(d0));
auto e = ((v2 / 2) & nd0) - v2 * d63;
auto mh = umul(v2, e).hi;
auto v3 = (v2 << 31) + (mh >> 1);

// OPT: The compiler tries a bit too much with 128 + 64 addition and ends up using subtraction.
// Compare with __int128.
auto mf = umul(v3, d);
auto m = fast_add(mf, d);
auto v3a = m.hi + d;

auto v4 = v3 - v3a;

return v4;


inline uint64_t reciprocal_3by2(uint128 d) noexcept

auto v = reciprocal_2by1(d.hi);
auto p = d.hi * v;
p += d.lo;
if (p < d.lo)

--v;
if (p >= d.hi)

--v;
p -= d.hi;

p -= d.hi;


auto t = umul(v, d.lo);

p += t.hi;
if (p < t.hi)

--v;
if (uint128p, t.lo >= d)
--v;

return v;


inline div_result<uint64_t> udivrem_2by1(uint128 u, uint64_t d, uint64_t v) noexcept

auto q = umul(v, u.hi);
q = fast_add(q, u);

++q.hi;

auto r = u.lo - q.hi * d;

if (r > q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem_3by2(
uint64_t u2, uint64_t u1, uint64_t u0, uint128 d, uint64_t v) noexcept

auto q = umul(v, u2);
q = fast_add(q, u2, u1);

auto r1 = u1 - q.hi * d.hi;

auto t = umul(d.lo, q.hi);

auto r = uint128r1, u0 - t - d;
r1 = r.hi;

++q.hi;

if (r1 >= q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem(uint128 x, uint128 y) noexcept

if (y.hi == 0)

uint64_t xn_ex, xn_hi, xn_lo, yn;

auto lsh = clz(y.lo);
if (lsh != 0)
(x.hi << lsh);
xn_lo = x.lo << lsh;
yn = y.lo << lsh;

else

xn_ex = 0;
xn_hi = x.hi;
xn_lo = x.lo;
yn = y.lo;


auto v = reciprocal_2by1(yn);

auto res = udivrem_2by1(xn_ex, xn_hi, yn, v);
auto q1 = res.quot;

res = udivrem_2by1(res.rem, xn_lo, yn, v);

return q1, res.quot, res.rem >> lsh;


if (y.hi > x.hi)
return 0, x;

auto lsh = clz(y.hi);
if (lsh == 0)
unsignedy.lo <= x.lo;
return q, x - (q ? y : 0);


auto rsh = 64 - lsh;

auto yn_lo = y.lo << lsh;
auto yn_hi = (y.lo >> rsh)

inline div_result<uint128> sdivrem(uint128 x, uint128 y) noexcept

constexpr auto sign_mask = uint1281 << 127;
const auto x_is_neg = (x & sign_mask) != 0;
const auto y_is_neg = (y & sign_mask) != 0;

const auto x_abs = x_is_neg ? -x : x;
const auto y_abs = y_is_neg ? -y : y;

const auto q_is_neg = x_is_neg ^ y_is_neg;

const auto res = udivrem(x_abs, y_abs);

return q_is_neg ? -res.quot : res.quot, x_is_neg ? -res.rem : res.rem;


inline uint128 operator/(uint128 x, uint128 y) noexcept

return udivrem(x, y).quot;


inline uint128 operator%(uint128 x, uint128 y) noexcept

return udivrem(x, y).rem;


inline uint128& operator/=(uint128& x, uint128 y) noexcept

return x = x / y;


inline uint128& operator%=(uint128& x, uint128 y) noexcept

return x = x % y;


/// @

// namespace intx


namespace std

template <unsigned N>
struct numeric_limits<intx::uint<N>>

using type = intx::uint<N>;

static constexpr bool is_specialized = true;
static constexpr bool is_integer = true;
static constexpr bool is_signed = false;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(type);
static constexpr int digits10 = int(0.3010299956639812 * digits);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = std::numeric_limits<unsigned>::traps;
static constexpr bool tinyness_before = false;

static constexpr type min() noexcept return 0;
static constexpr type lowest() noexcept return min();
static constexpr type max() noexcept return ~type0;
static constexpr type epsilon() noexcept return 0;
static constexpr type round_error() noexcept return 0;
static constexpr type infinity() noexcept return 0;
static constexpr type quiet_NaN() noexcept return 0;
static constexpr type signaling_NaN() noexcept return 0;
static constexpr type denorm_min() noexcept return 0;
;
// namespace std

namespace intx

template <typename Int>
constexpr Int from_string(const char* s)

using namespace std::literals;

auto x = Int;
int num_digits = 0;

if (s[0] == '0' && s[1] == 'x')

s += 2;
while (auto d = *s++)
= d;

return x;


while (auto d = *s++)

if (num_digits++ > std::numeric_limits<Int>::digits10)
throw std::overflow_error"Integer overflow";

x = constexpr_mul(x, Int10);
if (d >= '0' && d <= '9')
d -= '0';
else
throw std::invalid_argument"Invalid literal character: "s + d;
x += d;
if (x < d)
throw std::overflow_error"Integer overflow";

return x;


template <typename Int>
constexpr Int from_string(const std::string& s)

return from_string<Int>(s.c_str());


constexpr uint128 operator""_u128(const char* s)

return from_string<uint128>(s);


template <unsigned N>
inline std::string to_string(uint<N> x, int base = 10)


template <unsigned N>
inline std::string hex(uint<N> x)

return to_string(x, 16);

// namespace intx









share|improve this question











$endgroup$











  • $begingroup$
    When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
    $endgroup$
    – Toby Speight
    May 23 at 11:23


















13












$begingroup$


This implements 128-bit unsigned integer using C++14.
It works on MSVC and 32-bit architectures being complementary to the unsigned __int128 type provided by GCC and clang on 64-bit architectures.



// intx: extended precision integer library.
// Copyright 2019 Pawel Bylica.
// Licensed under the Apache License, Version 2.0.

#pragma once

#include <algorithm>
#include <climits>
#include <cstdint>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace intx

template <unsigned N>
struct uint;

/// The 128-bit unsigned integer.
///
/// This type is defined as a specialization of uint<> to easier integration with full intx package,
/// however, uint128 may be used independently.
template <>
struct uint<128>

uint64_t lo = 0;
uint64_t hi = 0;

constexpr uint() noexcept = default;

constexpr uint(uint64_t high, uint64_t low) noexcept : lolow, hihigh

template <typename T,
typename = typename std::enable_if_t<std::is_convertible<T, uint64_t>::value>>
constexpr uint(T x) noexcept : lo(static_cast<uint64_t>(x)) // NOLINT


#ifdef __SIZEOF_INT128__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
constexpr uint(unsigned __int128 x) noexcept // NOLINT
: louint64_t(x), hiuint64_t(x >> 64)


constexpr explicit operator unsigned __int128() const noexcept
lo;

#pragma GCC diagnostic pop
#endif

constexpr explicit operator bool() const noexcept return hi

/// Explicit converting operator for all builtin integral types.
template <typename Int, typename = typename std::enable_if<std::is_integral<Int>::value>::type>
constexpr explicit operator Int() const noexcept

return static_cast<Int>(lo);

;

using uint128 = uint<128>;


/// Linear arithmetic operators.
/// @

constexpr uint128 operator+(uint128 x, uint128 y) noexcept

const auto lo = x.lo + y.lo;
const auto carry = x.lo > lo;
const auto hi = x.hi + y.hi + carry;
return hi, lo;


constexpr uint128 operator+(uint128 x) noexcept

return x;


constexpr uint128 operator-(uint128 x, uint128 y) noexcept

const auto lo = x.lo - y.lo;
const auto borrow = x.lo < lo;
const auto hi = x.hi - y.hi - borrow;
return hi, lo;


constexpr uint128 operator-(uint128 x) noexcept

// Implementing as subtraction is better than ~x + 1.
// Clang9: Perfect.
// GCC8: Does something weird.
return 0 - x;


inline uint128& operator++(uint128& x) noexcept

return x = x + 1;


inline uint128& operator--(uint128& x) noexcept

return x = x - 1;


inline uint128 operator++(uint128& x, int) noexcept

auto ret = x;
++x;
return ret;


inline uint128 operator--(uint128& x, int) noexcept

auto ret = x;
--x;
return ret;


/// Optimized addition.
///
/// This keeps the multiprecision addition until CodeGen so the pattern is not
/// broken during other optimizations.
constexpr uint128 fast_add(uint128 x, uint128 y) noexcept

#ifdef __SIZEOF_INT128__xxx
return (unsigned __int128)x + (unsigned __int128)y;
#else
// Fallback to regular addition.
return x + y;
#endif


/// @


/// Comparison operators.
///
/// In all implementations bitwise operators are used instead of logical ones
/// to avoid branching.
///
/// @

constexpr bool operator==(uint128 x, uint128 y) noexcept

// Clang7: generates perfect xor based code,
// much better than __int128 where it uses vector instructions.
// GCC8: generates a bit worse cmp based code
// although it generates the xor based one for __int128.
return (x.lo == y.lo) & (x.hi == y.hi);


constexpr bool operator!=(uint128 x, uint128 y) noexcept

// Analogous to ==, but == not used directly, because that confuses GCC8.
return (x.lo != y.lo)

constexpr bool operator<(uint128 x, uint128 y) noexcept

// OPT: This should be implemented by checking the borrow of x - y,
// but compilers (GCC8, Clang7)
// have problem with properly optimizing subtraction.
return (x.hi < y.hi)

constexpr bool operator<=(uint128 x, uint128 y) noexcept
(x == y).
return (x.hi < y.hi)

constexpr bool operator>(uint128 x, uint128 y) noexcept

return !(x <= y);


constexpr bool operator>=(uint128 x, uint128 y) noexcept

return !(x < y);


/// @


/// Bitwise operators.
/// @

constexpr uint128 operator~(uint128 x) noexcept

return ~x.hi, ~x.lo;


constexpr uint128 operator


/// Multiplication
/// @

/// Portable full unsigned multiplication 64 x 64 -> 128.
constexpr uint128 constexpr_umul(uint64_t x, uint64_t y) noexcept

uint64_t xl = x & 0xffffffff;
uint64_t xh = x >> 32;
uint64_t yl = y & 0xffffffff;
uint64_t yh = y >> 32;

uint64_t t0 = xl * yl;
uint64_t t1 = xh * yl;
uint64_t t2 = xl * yh;
uint64_t t3 = xh * yh;

uint64_t u1 = t1 + (t0 >> 32);
uint64_t u2 = t2 + (u1 & 0xffffffff);

uint64_t lo = (u2 << 32)

/// Full unsigned multiplication 64 x 64 -> 128.
inline uint128 umul(uint64_t x, uint64_t y) noexcept

#if defined(__SIZEOF_INT128__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
const auto p = static_cast<unsigned __int128>(x) * y;
return uint64_t(p >> 64), uint64_t(p);
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
unsigned __int64 hi;
const auto lo = _umul128(x, y, &hi);
return hi, lo;
#else
return constexpr_umul(x, y);
#endif


inline uint128 operator*(uint128 x, uint128 y) noexcept

auto p = umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


constexpr uint128 constexpr_mul(uint128 x, uint128 y) noexcept

auto p = constexpr_umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


/// @


/// Assignment operators.
/// @

constexpr uint128& operator+=(uint128& x, uint128 y) noexcept

return x = x + y;


constexpr uint128& operator-=(uint128& x, uint128 y) noexcept

return x = x - y;


inline uint128& operator*=(uint128& x, uint128 y) noexcept

return x = x * y;


constexpr uint128& operator


inline unsigned clz(uint32_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse(&most_significant_bit, x);
return 31 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clz(x));
#endif


inline unsigned clz(uint64_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse64(&most_significant_bit, x);
return 63 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clzll(x));
#endif


inline unsigned clz(uint128 x) noexcept
64 : clz(x.hi);



inline uint64_t bswap(uint64_t x) noexcept

#ifdef _MSC_VER
return _byteswap_uint64(x);
#else
return __builtin_bswap64(x);
#endif


inline uint128 bswap(uint128 x) noexcept

return bswap(x.lo), bswap(x.hi);



/// Division.
/// @

template <typename T>
struct div_result

T quot;
T rem;
;

namespace internal

constexpr uint16_t reciprocal_table_item(uint8_t d9) noexcept

return uint16_t(0x7fd00 / (0x100

#define REPEAT4(x)
reciprocal_table_item((x) + 0), reciprocal_table_item((x) + 1),
reciprocal_table_item((x) + 2), reciprocal_table_item((x) + 3)

#define REPEAT32(x)
REPEAT4((x) + 4 * 0), REPEAT4((x) + 4 * 1), REPEAT4((x) + 4 * 2), REPEAT4((x) + 4 * 3),
REPEAT4((x) + 4 * 4), REPEAT4((x) + 4 * 5), REPEAT4((x) + 4 * 6), REPEAT4((x) + 4 * 7)

#define REPEAT256()
REPEAT32(32 * 0), REPEAT32(32 * 1), REPEAT32(32 * 2), REPEAT32(32 * 3), REPEAT32(32 * 4),
REPEAT32(32 * 5), REPEAT32(32 * 6), REPEAT32(32 * 7)

/// Reciprocal lookup table.
constexpr uint16_t reciprocal_table[] = REPEAT256();

#undef REPEAT4
#undef REPEAT32
#undef REPEAT256
// namespace internal

/// Computes the reciprocal (2^128 - 1) / d - 2^64 for normalized d.
///
/// Based on Algorithm 2 from "Improved division by invariant integers".
inline uint64_t reciprocal_2by1(uint64_t d) noexcept

auto d9 = uint8_t(d >> 55);
auto v0 = uint64_tinternal::reciprocal_table[d9];

auto d40 = (d >> 24) + 1;
auto v1 = (v0 << 11) - (v0 * v0 * d40 >> 40) - 1;

auto v2 = (v1 << 13) + (v1 * (0x1000000000000000 - v1 * d40) >> 47);

auto d0 = d % 2;
auto d63 = d / 2 + d0; // ceil(d/2)
auto nd0 = uint64_t(-int64_t(d0));
auto e = ((v2 / 2) & nd0) - v2 * d63;
auto mh = umul(v2, e).hi;
auto v3 = (v2 << 31) + (mh >> 1);

// OPT: The compiler tries a bit too much with 128 + 64 addition and ends up using subtraction.
// Compare with __int128.
auto mf = umul(v3, d);
auto m = fast_add(mf, d);
auto v3a = m.hi + d;

auto v4 = v3 - v3a;

return v4;


inline uint64_t reciprocal_3by2(uint128 d) noexcept

auto v = reciprocal_2by1(d.hi);
auto p = d.hi * v;
p += d.lo;
if (p < d.lo)

--v;
if (p >= d.hi)

--v;
p -= d.hi;

p -= d.hi;


auto t = umul(v, d.lo);

p += t.hi;
if (p < t.hi)

--v;
if (uint128p, t.lo >= d)
--v;

return v;


inline div_result<uint64_t> udivrem_2by1(uint128 u, uint64_t d, uint64_t v) noexcept

auto q = umul(v, u.hi);
q = fast_add(q, u);

++q.hi;

auto r = u.lo - q.hi * d;

if (r > q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem_3by2(
uint64_t u2, uint64_t u1, uint64_t u0, uint128 d, uint64_t v) noexcept

auto q = umul(v, u2);
q = fast_add(q, u2, u1);

auto r1 = u1 - q.hi * d.hi;

auto t = umul(d.lo, q.hi);

auto r = uint128r1, u0 - t - d;
r1 = r.hi;

++q.hi;

if (r1 >= q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem(uint128 x, uint128 y) noexcept

if (y.hi == 0)

uint64_t xn_ex, xn_hi, xn_lo, yn;

auto lsh = clz(y.lo);
if (lsh != 0)
(x.hi << lsh);
xn_lo = x.lo << lsh;
yn = y.lo << lsh;

else

xn_ex = 0;
xn_hi = x.hi;
xn_lo = x.lo;
yn = y.lo;


auto v = reciprocal_2by1(yn);

auto res = udivrem_2by1(xn_ex, xn_hi, yn, v);
auto q1 = res.quot;

res = udivrem_2by1(res.rem, xn_lo, yn, v);

return q1, res.quot, res.rem >> lsh;


if (y.hi > x.hi)
return 0, x;

auto lsh = clz(y.hi);
if (lsh == 0)
unsignedy.lo <= x.lo;
return q, x - (q ? y : 0);


auto rsh = 64 - lsh;

auto yn_lo = y.lo << lsh;
auto yn_hi = (y.lo >> rsh)

inline div_result<uint128> sdivrem(uint128 x, uint128 y) noexcept

constexpr auto sign_mask = uint1281 << 127;
const auto x_is_neg = (x & sign_mask) != 0;
const auto y_is_neg = (y & sign_mask) != 0;

const auto x_abs = x_is_neg ? -x : x;
const auto y_abs = y_is_neg ? -y : y;

const auto q_is_neg = x_is_neg ^ y_is_neg;

const auto res = udivrem(x_abs, y_abs);

return q_is_neg ? -res.quot : res.quot, x_is_neg ? -res.rem : res.rem;


inline uint128 operator/(uint128 x, uint128 y) noexcept

return udivrem(x, y).quot;


inline uint128 operator%(uint128 x, uint128 y) noexcept

return udivrem(x, y).rem;


inline uint128& operator/=(uint128& x, uint128 y) noexcept

return x = x / y;


inline uint128& operator%=(uint128& x, uint128 y) noexcept

return x = x % y;


/// @

// namespace intx


namespace std

template <unsigned N>
struct numeric_limits<intx::uint<N>>

using type = intx::uint<N>;

static constexpr bool is_specialized = true;
static constexpr bool is_integer = true;
static constexpr bool is_signed = false;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(type);
static constexpr int digits10 = int(0.3010299956639812 * digits);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = std::numeric_limits<unsigned>::traps;
static constexpr bool tinyness_before = false;

static constexpr type min() noexcept return 0;
static constexpr type lowest() noexcept return min();
static constexpr type max() noexcept return ~type0;
static constexpr type epsilon() noexcept return 0;
static constexpr type round_error() noexcept return 0;
static constexpr type infinity() noexcept return 0;
static constexpr type quiet_NaN() noexcept return 0;
static constexpr type signaling_NaN() noexcept return 0;
static constexpr type denorm_min() noexcept return 0;
;
// namespace std

namespace intx

template <typename Int>
constexpr Int from_string(const char* s)

using namespace std::literals;

auto x = Int;
int num_digits = 0;

if (s[0] == '0' && s[1] == 'x')

s += 2;
while (auto d = *s++)
= d;

return x;


while (auto d = *s++)

if (num_digits++ > std::numeric_limits<Int>::digits10)
throw std::overflow_error"Integer overflow";

x = constexpr_mul(x, Int10);
if (d >= '0' && d <= '9')
d -= '0';
else
throw std::invalid_argument"Invalid literal character: "s + d;
x += d;
if (x < d)
throw std::overflow_error"Integer overflow";

return x;


template <typename Int>
constexpr Int from_string(const std::string& s)

return from_string<Int>(s.c_str());


constexpr uint128 operator""_u128(const char* s)

return from_string<uint128>(s);


template <unsigned N>
inline std::string to_string(uint<N> x, int base = 10)


template <unsigned N>
inline std::string hex(uint<N> x)

return to_string(x, 16);

// namespace intx









share|improve this question











$endgroup$











  • $begingroup$
    When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
    $endgroup$
    – Toby Speight
    May 23 at 11:23














13












13








13


2



$begingroup$


This implements 128-bit unsigned integer using C++14.
It works on MSVC and 32-bit architectures being complementary to the unsigned __int128 type provided by GCC and clang on 64-bit architectures.



// intx: extended precision integer library.
// Copyright 2019 Pawel Bylica.
// Licensed under the Apache License, Version 2.0.

#pragma once

#include <algorithm>
#include <climits>
#include <cstdint>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace intx

template <unsigned N>
struct uint;

/// The 128-bit unsigned integer.
///
/// This type is defined as a specialization of uint<> to easier integration with full intx package,
/// however, uint128 may be used independently.
template <>
struct uint<128>

uint64_t lo = 0;
uint64_t hi = 0;

constexpr uint() noexcept = default;

constexpr uint(uint64_t high, uint64_t low) noexcept : lolow, hihigh

template <typename T,
typename = typename std::enable_if_t<std::is_convertible<T, uint64_t>::value>>
constexpr uint(T x) noexcept : lo(static_cast<uint64_t>(x)) // NOLINT


#ifdef __SIZEOF_INT128__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
constexpr uint(unsigned __int128 x) noexcept // NOLINT
: louint64_t(x), hiuint64_t(x >> 64)


constexpr explicit operator unsigned __int128() const noexcept
lo;

#pragma GCC diagnostic pop
#endif

constexpr explicit operator bool() const noexcept return hi

/// Explicit converting operator for all builtin integral types.
template <typename Int, typename = typename std::enable_if<std::is_integral<Int>::value>::type>
constexpr explicit operator Int() const noexcept

return static_cast<Int>(lo);

;

using uint128 = uint<128>;


/// Linear arithmetic operators.
/// @

constexpr uint128 operator+(uint128 x, uint128 y) noexcept

const auto lo = x.lo + y.lo;
const auto carry = x.lo > lo;
const auto hi = x.hi + y.hi + carry;
return hi, lo;


constexpr uint128 operator+(uint128 x) noexcept

return x;


constexpr uint128 operator-(uint128 x, uint128 y) noexcept

const auto lo = x.lo - y.lo;
const auto borrow = x.lo < lo;
const auto hi = x.hi - y.hi - borrow;
return hi, lo;


constexpr uint128 operator-(uint128 x) noexcept

// Implementing as subtraction is better than ~x + 1.
// Clang9: Perfect.
// GCC8: Does something weird.
return 0 - x;


inline uint128& operator++(uint128& x) noexcept

return x = x + 1;


inline uint128& operator--(uint128& x) noexcept

return x = x - 1;


inline uint128 operator++(uint128& x, int) noexcept

auto ret = x;
++x;
return ret;


inline uint128 operator--(uint128& x, int) noexcept

auto ret = x;
--x;
return ret;


/// Optimized addition.
///
/// This keeps the multiprecision addition until CodeGen so the pattern is not
/// broken during other optimizations.
constexpr uint128 fast_add(uint128 x, uint128 y) noexcept

#ifdef __SIZEOF_INT128__xxx
return (unsigned __int128)x + (unsigned __int128)y;
#else
// Fallback to regular addition.
return x + y;
#endif


/// @


/// Comparison operators.
///
/// In all implementations bitwise operators are used instead of logical ones
/// to avoid branching.
///
/// @

constexpr bool operator==(uint128 x, uint128 y) noexcept

// Clang7: generates perfect xor based code,
// much better than __int128 where it uses vector instructions.
// GCC8: generates a bit worse cmp based code
// although it generates the xor based one for __int128.
return (x.lo == y.lo) & (x.hi == y.hi);


constexpr bool operator!=(uint128 x, uint128 y) noexcept

// Analogous to ==, but == not used directly, because that confuses GCC8.
return (x.lo != y.lo)

constexpr bool operator<(uint128 x, uint128 y) noexcept

// OPT: This should be implemented by checking the borrow of x - y,
// but compilers (GCC8, Clang7)
// have problem with properly optimizing subtraction.
return (x.hi < y.hi)

constexpr bool operator<=(uint128 x, uint128 y) noexcept
(x == y).
return (x.hi < y.hi)

constexpr bool operator>(uint128 x, uint128 y) noexcept

return !(x <= y);


constexpr bool operator>=(uint128 x, uint128 y) noexcept

return !(x < y);


/// @


/// Bitwise operators.
/// @

constexpr uint128 operator~(uint128 x) noexcept

return ~x.hi, ~x.lo;


constexpr uint128 operator


/// Multiplication
/// @

/// Portable full unsigned multiplication 64 x 64 -> 128.
constexpr uint128 constexpr_umul(uint64_t x, uint64_t y) noexcept

uint64_t xl = x & 0xffffffff;
uint64_t xh = x >> 32;
uint64_t yl = y & 0xffffffff;
uint64_t yh = y >> 32;

uint64_t t0 = xl * yl;
uint64_t t1 = xh * yl;
uint64_t t2 = xl * yh;
uint64_t t3 = xh * yh;

uint64_t u1 = t1 + (t0 >> 32);
uint64_t u2 = t2 + (u1 & 0xffffffff);

uint64_t lo = (u2 << 32)

/// Full unsigned multiplication 64 x 64 -> 128.
inline uint128 umul(uint64_t x, uint64_t y) noexcept

#if defined(__SIZEOF_INT128__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
const auto p = static_cast<unsigned __int128>(x) * y;
return uint64_t(p >> 64), uint64_t(p);
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
unsigned __int64 hi;
const auto lo = _umul128(x, y, &hi);
return hi, lo;
#else
return constexpr_umul(x, y);
#endif


inline uint128 operator*(uint128 x, uint128 y) noexcept

auto p = umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


constexpr uint128 constexpr_mul(uint128 x, uint128 y) noexcept

auto p = constexpr_umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


/// @


/// Assignment operators.
/// @

constexpr uint128& operator+=(uint128& x, uint128 y) noexcept

return x = x + y;


constexpr uint128& operator-=(uint128& x, uint128 y) noexcept

return x = x - y;


inline uint128& operator*=(uint128& x, uint128 y) noexcept

return x = x * y;


constexpr uint128& operator


inline unsigned clz(uint32_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse(&most_significant_bit, x);
return 31 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clz(x));
#endif


inline unsigned clz(uint64_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse64(&most_significant_bit, x);
return 63 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clzll(x));
#endif


inline unsigned clz(uint128 x) noexcept
64 : clz(x.hi);



inline uint64_t bswap(uint64_t x) noexcept

#ifdef _MSC_VER
return _byteswap_uint64(x);
#else
return __builtin_bswap64(x);
#endif


inline uint128 bswap(uint128 x) noexcept

return bswap(x.lo), bswap(x.hi);



/// Division.
/// @

template <typename T>
struct div_result

T quot;
T rem;
;

namespace internal

constexpr uint16_t reciprocal_table_item(uint8_t d9) noexcept

return uint16_t(0x7fd00 / (0x100

#define REPEAT4(x)
reciprocal_table_item((x) + 0), reciprocal_table_item((x) + 1),
reciprocal_table_item((x) + 2), reciprocal_table_item((x) + 3)

#define REPEAT32(x)
REPEAT4((x) + 4 * 0), REPEAT4((x) + 4 * 1), REPEAT4((x) + 4 * 2), REPEAT4((x) + 4 * 3),
REPEAT4((x) + 4 * 4), REPEAT4((x) + 4 * 5), REPEAT4((x) + 4 * 6), REPEAT4((x) + 4 * 7)

#define REPEAT256()
REPEAT32(32 * 0), REPEAT32(32 * 1), REPEAT32(32 * 2), REPEAT32(32 * 3), REPEAT32(32 * 4),
REPEAT32(32 * 5), REPEAT32(32 * 6), REPEAT32(32 * 7)

/// Reciprocal lookup table.
constexpr uint16_t reciprocal_table[] = REPEAT256();

#undef REPEAT4
#undef REPEAT32
#undef REPEAT256
// namespace internal

/// Computes the reciprocal (2^128 - 1) / d - 2^64 for normalized d.
///
/// Based on Algorithm 2 from "Improved division by invariant integers".
inline uint64_t reciprocal_2by1(uint64_t d) noexcept

auto d9 = uint8_t(d >> 55);
auto v0 = uint64_tinternal::reciprocal_table[d9];

auto d40 = (d >> 24) + 1;
auto v1 = (v0 << 11) - (v0 * v0 * d40 >> 40) - 1;

auto v2 = (v1 << 13) + (v1 * (0x1000000000000000 - v1 * d40) >> 47);

auto d0 = d % 2;
auto d63 = d / 2 + d0; // ceil(d/2)
auto nd0 = uint64_t(-int64_t(d0));
auto e = ((v2 / 2) & nd0) - v2 * d63;
auto mh = umul(v2, e).hi;
auto v3 = (v2 << 31) + (mh >> 1);

// OPT: The compiler tries a bit too much with 128 + 64 addition and ends up using subtraction.
// Compare with __int128.
auto mf = umul(v3, d);
auto m = fast_add(mf, d);
auto v3a = m.hi + d;

auto v4 = v3 - v3a;

return v4;


inline uint64_t reciprocal_3by2(uint128 d) noexcept

auto v = reciprocal_2by1(d.hi);
auto p = d.hi * v;
p += d.lo;
if (p < d.lo)

--v;
if (p >= d.hi)

--v;
p -= d.hi;

p -= d.hi;


auto t = umul(v, d.lo);

p += t.hi;
if (p < t.hi)

--v;
if (uint128p, t.lo >= d)
--v;

return v;


inline div_result<uint64_t> udivrem_2by1(uint128 u, uint64_t d, uint64_t v) noexcept

auto q = umul(v, u.hi);
q = fast_add(q, u);

++q.hi;

auto r = u.lo - q.hi * d;

if (r > q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem_3by2(
uint64_t u2, uint64_t u1, uint64_t u0, uint128 d, uint64_t v) noexcept

auto q = umul(v, u2);
q = fast_add(q, u2, u1);

auto r1 = u1 - q.hi * d.hi;

auto t = umul(d.lo, q.hi);

auto r = uint128r1, u0 - t - d;
r1 = r.hi;

++q.hi;

if (r1 >= q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem(uint128 x, uint128 y) noexcept

if (y.hi == 0)

uint64_t xn_ex, xn_hi, xn_lo, yn;

auto lsh = clz(y.lo);
if (lsh != 0)
(x.hi << lsh);
xn_lo = x.lo << lsh;
yn = y.lo << lsh;

else

xn_ex = 0;
xn_hi = x.hi;
xn_lo = x.lo;
yn = y.lo;


auto v = reciprocal_2by1(yn);

auto res = udivrem_2by1(xn_ex, xn_hi, yn, v);
auto q1 = res.quot;

res = udivrem_2by1(res.rem, xn_lo, yn, v);

return q1, res.quot, res.rem >> lsh;


if (y.hi > x.hi)
return 0, x;

auto lsh = clz(y.hi);
if (lsh == 0)
unsignedy.lo <= x.lo;
return q, x - (q ? y : 0);


auto rsh = 64 - lsh;

auto yn_lo = y.lo << lsh;
auto yn_hi = (y.lo >> rsh)

inline div_result<uint128> sdivrem(uint128 x, uint128 y) noexcept

constexpr auto sign_mask = uint1281 << 127;
const auto x_is_neg = (x & sign_mask) != 0;
const auto y_is_neg = (y & sign_mask) != 0;

const auto x_abs = x_is_neg ? -x : x;
const auto y_abs = y_is_neg ? -y : y;

const auto q_is_neg = x_is_neg ^ y_is_neg;

const auto res = udivrem(x_abs, y_abs);

return q_is_neg ? -res.quot : res.quot, x_is_neg ? -res.rem : res.rem;


inline uint128 operator/(uint128 x, uint128 y) noexcept

return udivrem(x, y).quot;


inline uint128 operator%(uint128 x, uint128 y) noexcept

return udivrem(x, y).rem;


inline uint128& operator/=(uint128& x, uint128 y) noexcept

return x = x / y;


inline uint128& operator%=(uint128& x, uint128 y) noexcept

return x = x % y;


/// @

// namespace intx


namespace std

template <unsigned N>
struct numeric_limits<intx::uint<N>>

using type = intx::uint<N>;

static constexpr bool is_specialized = true;
static constexpr bool is_integer = true;
static constexpr bool is_signed = false;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(type);
static constexpr int digits10 = int(0.3010299956639812 * digits);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = std::numeric_limits<unsigned>::traps;
static constexpr bool tinyness_before = false;

static constexpr type min() noexcept return 0;
static constexpr type lowest() noexcept return min();
static constexpr type max() noexcept return ~type0;
static constexpr type epsilon() noexcept return 0;
static constexpr type round_error() noexcept return 0;
static constexpr type infinity() noexcept return 0;
static constexpr type quiet_NaN() noexcept return 0;
static constexpr type signaling_NaN() noexcept return 0;
static constexpr type denorm_min() noexcept return 0;
;
// namespace std

namespace intx

template <typename Int>
constexpr Int from_string(const char* s)

using namespace std::literals;

auto x = Int;
int num_digits = 0;

if (s[0] == '0' && s[1] == 'x')

s += 2;
while (auto d = *s++)
= d;

return x;


while (auto d = *s++)

if (num_digits++ > std::numeric_limits<Int>::digits10)
throw std::overflow_error"Integer overflow";

x = constexpr_mul(x, Int10);
if (d >= '0' && d <= '9')
d -= '0';
else
throw std::invalid_argument"Invalid literal character: "s + d;
x += d;
if (x < d)
throw std::overflow_error"Integer overflow";

return x;


template <typename Int>
constexpr Int from_string(const std::string& s)

return from_string<Int>(s.c_str());


constexpr uint128 operator""_u128(const char* s)

return from_string<uint128>(s);


template <unsigned N>
inline std::string to_string(uint<N> x, int base = 10)


template <unsigned N>
inline std::string hex(uint<N> x)

return to_string(x, 16);

// namespace intx









share|improve this question











$endgroup$




This implements 128-bit unsigned integer using C++14.
It works on MSVC and 32-bit architectures being complementary to the unsigned __int128 type provided by GCC and clang on 64-bit architectures.



// intx: extended precision integer library.
// Copyright 2019 Pawel Bylica.
// Licensed under the Apache License, Version 2.0.

#pragma once

#include <algorithm>
#include <climits>
#include <cstdint>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace intx

template <unsigned N>
struct uint;

/// The 128-bit unsigned integer.
///
/// This type is defined as a specialization of uint<> to easier integration with full intx package,
/// however, uint128 may be used independently.
template <>
struct uint<128>

uint64_t lo = 0;
uint64_t hi = 0;

constexpr uint() noexcept = default;

constexpr uint(uint64_t high, uint64_t low) noexcept : lolow, hihigh

template <typename T,
typename = typename std::enable_if_t<std::is_convertible<T, uint64_t>::value>>
constexpr uint(T x) noexcept : lo(static_cast<uint64_t>(x)) // NOLINT


#ifdef __SIZEOF_INT128__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
constexpr uint(unsigned __int128 x) noexcept // NOLINT
: louint64_t(x), hiuint64_t(x >> 64)


constexpr explicit operator unsigned __int128() const noexcept
lo;

#pragma GCC diagnostic pop
#endif

constexpr explicit operator bool() const noexcept return hi

/// Explicit converting operator for all builtin integral types.
template <typename Int, typename = typename std::enable_if<std::is_integral<Int>::value>::type>
constexpr explicit operator Int() const noexcept

return static_cast<Int>(lo);

;

using uint128 = uint<128>;


/// Linear arithmetic operators.
/// @

constexpr uint128 operator+(uint128 x, uint128 y) noexcept

const auto lo = x.lo + y.lo;
const auto carry = x.lo > lo;
const auto hi = x.hi + y.hi + carry;
return hi, lo;


constexpr uint128 operator+(uint128 x) noexcept

return x;


constexpr uint128 operator-(uint128 x, uint128 y) noexcept

const auto lo = x.lo - y.lo;
const auto borrow = x.lo < lo;
const auto hi = x.hi - y.hi - borrow;
return hi, lo;


constexpr uint128 operator-(uint128 x) noexcept

// Implementing as subtraction is better than ~x + 1.
// Clang9: Perfect.
// GCC8: Does something weird.
return 0 - x;


inline uint128& operator++(uint128& x) noexcept

return x = x + 1;


inline uint128& operator--(uint128& x) noexcept

return x = x - 1;


inline uint128 operator++(uint128& x, int) noexcept

auto ret = x;
++x;
return ret;


inline uint128 operator--(uint128& x, int) noexcept

auto ret = x;
--x;
return ret;


/// Optimized addition.
///
/// This keeps the multiprecision addition until CodeGen so the pattern is not
/// broken during other optimizations.
constexpr uint128 fast_add(uint128 x, uint128 y) noexcept

#ifdef __SIZEOF_INT128__xxx
return (unsigned __int128)x + (unsigned __int128)y;
#else
// Fallback to regular addition.
return x + y;
#endif


/// @


/// Comparison operators.
///
/// In all implementations bitwise operators are used instead of logical ones
/// to avoid branching.
///
/// @

constexpr bool operator==(uint128 x, uint128 y) noexcept

// Clang7: generates perfect xor based code,
// much better than __int128 where it uses vector instructions.
// GCC8: generates a bit worse cmp based code
// although it generates the xor based one for __int128.
return (x.lo == y.lo) & (x.hi == y.hi);


constexpr bool operator!=(uint128 x, uint128 y) noexcept

// Analogous to ==, but == not used directly, because that confuses GCC8.
return (x.lo != y.lo)

constexpr bool operator<(uint128 x, uint128 y) noexcept

// OPT: This should be implemented by checking the borrow of x - y,
// but compilers (GCC8, Clang7)
// have problem with properly optimizing subtraction.
return (x.hi < y.hi)

constexpr bool operator<=(uint128 x, uint128 y) noexcept
(x == y).
return (x.hi < y.hi)

constexpr bool operator>(uint128 x, uint128 y) noexcept

return !(x <= y);


constexpr bool operator>=(uint128 x, uint128 y) noexcept

return !(x < y);


/// @


/// Bitwise operators.
/// @

constexpr uint128 operator~(uint128 x) noexcept

return ~x.hi, ~x.lo;


constexpr uint128 operator


/// Multiplication
/// @

/// Portable full unsigned multiplication 64 x 64 -> 128.
constexpr uint128 constexpr_umul(uint64_t x, uint64_t y) noexcept

uint64_t xl = x & 0xffffffff;
uint64_t xh = x >> 32;
uint64_t yl = y & 0xffffffff;
uint64_t yh = y >> 32;

uint64_t t0 = xl * yl;
uint64_t t1 = xh * yl;
uint64_t t2 = xl * yh;
uint64_t t3 = xh * yh;

uint64_t u1 = t1 + (t0 >> 32);
uint64_t u2 = t2 + (u1 & 0xffffffff);

uint64_t lo = (u2 << 32)

/// Full unsigned multiplication 64 x 64 -> 128.
inline uint128 umul(uint64_t x, uint64_t y) noexcept

#if defined(__SIZEOF_INT128__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
const auto p = static_cast<unsigned __int128>(x) * y;
return uint64_t(p >> 64), uint64_t(p);
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
unsigned __int64 hi;
const auto lo = _umul128(x, y, &hi);
return hi, lo;
#else
return constexpr_umul(x, y);
#endif


inline uint128 operator*(uint128 x, uint128 y) noexcept

auto p = umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


constexpr uint128 constexpr_mul(uint128 x, uint128 y) noexcept

auto p = constexpr_umul(x.lo, y.lo);
p.hi += (x.lo * y.hi) + (x.hi * y.lo);
return p.hi, p.lo;


/// @


/// Assignment operators.
/// @

constexpr uint128& operator+=(uint128& x, uint128 y) noexcept

return x = x + y;


constexpr uint128& operator-=(uint128& x, uint128 y) noexcept

return x = x - y;


inline uint128& operator*=(uint128& x, uint128 y) noexcept

return x = x * y;


constexpr uint128& operator


inline unsigned clz(uint32_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse(&most_significant_bit, x);
return 31 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clz(x));
#endif


inline unsigned clz(uint64_t x) noexcept

#ifdef _MSC_VER
unsigned long most_significant_bit;
_BitScanReverse64(&most_significant_bit, x);
return 63 ^ (unsigned)most_significant_bit;
#else
return unsigned(__builtin_clzll(x));
#endif


inline unsigned clz(uint128 x) noexcept
64 : clz(x.hi);



inline uint64_t bswap(uint64_t x) noexcept

#ifdef _MSC_VER
return _byteswap_uint64(x);
#else
return __builtin_bswap64(x);
#endif


inline uint128 bswap(uint128 x) noexcept

return bswap(x.lo), bswap(x.hi);



/// Division.
/// @

template <typename T>
struct div_result

T quot;
T rem;
;

namespace internal

constexpr uint16_t reciprocal_table_item(uint8_t d9) noexcept

return uint16_t(0x7fd00 / (0x100

#define REPEAT4(x)
reciprocal_table_item((x) + 0), reciprocal_table_item((x) + 1),
reciprocal_table_item((x) + 2), reciprocal_table_item((x) + 3)

#define REPEAT32(x)
REPEAT4((x) + 4 * 0), REPEAT4((x) + 4 * 1), REPEAT4((x) + 4 * 2), REPEAT4((x) + 4 * 3),
REPEAT4((x) + 4 * 4), REPEAT4((x) + 4 * 5), REPEAT4((x) + 4 * 6), REPEAT4((x) + 4 * 7)

#define REPEAT256()
REPEAT32(32 * 0), REPEAT32(32 * 1), REPEAT32(32 * 2), REPEAT32(32 * 3), REPEAT32(32 * 4),
REPEAT32(32 * 5), REPEAT32(32 * 6), REPEAT32(32 * 7)

/// Reciprocal lookup table.
constexpr uint16_t reciprocal_table[] = REPEAT256();

#undef REPEAT4
#undef REPEAT32
#undef REPEAT256
// namespace internal

/// Computes the reciprocal (2^128 - 1) / d - 2^64 for normalized d.
///
/// Based on Algorithm 2 from "Improved division by invariant integers".
inline uint64_t reciprocal_2by1(uint64_t d) noexcept

auto d9 = uint8_t(d >> 55);
auto v0 = uint64_tinternal::reciprocal_table[d9];

auto d40 = (d >> 24) + 1;
auto v1 = (v0 << 11) - (v0 * v0 * d40 >> 40) - 1;

auto v2 = (v1 << 13) + (v1 * (0x1000000000000000 - v1 * d40) >> 47);

auto d0 = d % 2;
auto d63 = d / 2 + d0; // ceil(d/2)
auto nd0 = uint64_t(-int64_t(d0));
auto e = ((v2 / 2) & nd0) - v2 * d63;
auto mh = umul(v2, e).hi;
auto v3 = (v2 << 31) + (mh >> 1);

// OPT: The compiler tries a bit too much with 128 + 64 addition and ends up using subtraction.
// Compare with __int128.
auto mf = umul(v3, d);
auto m = fast_add(mf, d);
auto v3a = m.hi + d;

auto v4 = v3 - v3a;

return v4;


inline uint64_t reciprocal_3by2(uint128 d) noexcept

auto v = reciprocal_2by1(d.hi);
auto p = d.hi * v;
p += d.lo;
if (p < d.lo)

--v;
if (p >= d.hi)

--v;
p -= d.hi;

p -= d.hi;


auto t = umul(v, d.lo);

p += t.hi;
if (p < t.hi)

--v;
if (uint128p, t.lo >= d)
--v;

return v;


inline div_result<uint64_t> udivrem_2by1(uint128 u, uint64_t d, uint64_t v) noexcept

auto q = umul(v, u.hi);
q = fast_add(q, u);

++q.hi;

auto r = u.lo - q.hi * d;

if (r > q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem_3by2(
uint64_t u2, uint64_t u1, uint64_t u0, uint128 d, uint64_t v) noexcept

auto q = umul(v, u2);
q = fast_add(q, u2, u1);

auto r1 = u1 - q.hi * d.hi;

auto t = umul(d.lo, q.hi);

auto r = uint128r1, u0 - t - d;
r1 = r.hi;

++q.hi;

if (r1 >= q.lo)

--q.hi;
r += d;


if (r >= d)

++q.hi;
r -= d;


return q.hi, r;


inline div_result<uint128> udivrem(uint128 x, uint128 y) noexcept

if (y.hi == 0)

uint64_t xn_ex, xn_hi, xn_lo, yn;

auto lsh = clz(y.lo);
if (lsh != 0)
(x.hi << lsh);
xn_lo = x.lo << lsh;
yn = y.lo << lsh;

else

xn_ex = 0;
xn_hi = x.hi;
xn_lo = x.lo;
yn = y.lo;


auto v = reciprocal_2by1(yn);

auto res = udivrem_2by1(xn_ex, xn_hi, yn, v);
auto q1 = res.quot;

res = udivrem_2by1(res.rem, xn_lo, yn, v);

return q1, res.quot, res.rem >> lsh;


if (y.hi > x.hi)
return 0, x;

auto lsh = clz(y.hi);
if (lsh == 0)
unsignedy.lo <= x.lo;
return q, x - (q ? y : 0);


auto rsh = 64 - lsh;

auto yn_lo = y.lo << lsh;
auto yn_hi = (y.lo >> rsh)

inline div_result<uint128> sdivrem(uint128 x, uint128 y) noexcept

constexpr auto sign_mask = uint1281 << 127;
const auto x_is_neg = (x & sign_mask) != 0;
const auto y_is_neg = (y & sign_mask) != 0;

const auto x_abs = x_is_neg ? -x : x;
const auto y_abs = y_is_neg ? -y : y;

const auto q_is_neg = x_is_neg ^ y_is_neg;

const auto res = udivrem(x_abs, y_abs);

return q_is_neg ? -res.quot : res.quot, x_is_neg ? -res.rem : res.rem;


inline uint128 operator/(uint128 x, uint128 y) noexcept

return udivrem(x, y).quot;


inline uint128 operator%(uint128 x, uint128 y) noexcept

return udivrem(x, y).rem;


inline uint128& operator/=(uint128& x, uint128 y) noexcept

return x = x / y;


inline uint128& operator%=(uint128& x, uint128 y) noexcept

return x = x % y;


/// @

// namespace intx


namespace std

template <unsigned N>
struct numeric_limits<intx::uint<N>>

using type = intx::uint<N>;

static constexpr bool is_specialized = true;
static constexpr bool is_integer = true;
static constexpr bool is_signed = false;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(type);
static constexpr int digits10 = int(0.3010299956639812 * digits);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = std::numeric_limits<unsigned>::traps;
static constexpr bool tinyness_before = false;

static constexpr type min() noexcept return 0;
static constexpr type lowest() noexcept return min();
static constexpr type max() noexcept return ~type0;
static constexpr type epsilon() noexcept return 0;
static constexpr type round_error() noexcept return 0;
static constexpr type infinity() noexcept return 0;
static constexpr type quiet_NaN() noexcept return 0;
static constexpr type signaling_NaN() noexcept return 0;
static constexpr type denorm_min() noexcept return 0;
;
// namespace std

namespace intx

template <typename Int>
constexpr Int from_string(const char* s)

using namespace std::literals;

auto x = Int;
int num_digits = 0;

if (s[0] == '0' && s[1] == 'x')

s += 2;
while (auto d = *s++)
= d;

return x;


while (auto d = *s++)

if (num_digits++ > std::numeric_limits<Int>::digits10)
throw std::overflow_error"Integer overflow";

x = constexpr_mul(x, Int10);
if (d >= '0' && d <= '9')
d -= '0';
else
throw std::invalid_argument"Invalid literal character: "s + d;
x += d;
if (x < d)
throw std::overflow_error"Integer overflow";

return x;


template <typename Int>
constexpr Int from_string(const std::string& s)

return from_string<Int>(s.c_str());


constexpr uint128 operator""_u128(const char* s)

return from_string<uint128>(s);


template <unsigned N>
inline std::string to_string(uint<N> x, int base = 10)


template <unsigned N>
inline std::string hex(uint<N> x)

return to_string(x, 16);

// namespace intx






c++ c++14 integer






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 23 at 21:29









AlexV

2,428924




2,428924










asked May 23 at 9:23









Paweł BylicaPaweł Bylica

1663




1663











  • $begingroup$
    When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
    $endgroup$
    – Toby Speight
    May 23 at 11:23

















  • $begingroup$
    When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
    $endgroup$
    – Toby Speight
    May 23 at 11:23
















$begingroup$
When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
$endgroup$
– Toby Speight
May 23 at 11:23





$begingroup$
When you write "complementary to the unsigned __int128 type" do you mean that it's a drop-in replacement? (so one could write #define u128 unsigned __int128 or #define u128 intx::uint<128> depending on whether there's a native 128-bit integer)
$endgroup$
– Toby Speight
May 23 at 11:23











1 Answer
1






active

oldest

votes


















13












$begingroup$

std::uint64_t is consistently misspelt throughout the code, and may be a poor choice anyway (since an exact 64-bit type need not be provided). It's better to use one of std::uint_fast64_t or std::uint_least64_t instead, for better portability. (Edit: as suggested by supercat in a comment, only the exact-width type will work correctly here, given the implicit masking we rely on for detecting carry and elsewhere, so disregard this recommendation: we want to fail to compile where this won't hold.)



I'd expect constructors from other intx::uint<> instantiations (obviously, the narrowing conversions should be explicit).



The ++ and -- operators could be implemented much more efficiently by using the members rather than converting and adding/subtracting. Unary - might also be better implemented element-wise.



It's good to see that you've included a specialization of std::numeric_limits for this type. A minor nitpick: I think that digits10 needs to round up rather than down. It's unfortunate that we're not allowed to specialize std::is_integral too.



A few problems in from_string():



  • Style (minor): writing sizeof(x) instead of simply sizeof x makes it look like x is a type name.

  • Actually, there's a more serious error in that line, in assuming that char is 8 bits (2 hex digits), rather than using CHAR_BIT - I'd write sizeof x * CHAR_BIT / 4 there for full portability.

  • Alternatively, allow redundant leading zeros by simply checking clz(x) >= 4 before shifting.

  • Also, why are octal inputs to from_string() treated as decimal? That's surprising to me.

  • It might be useful to have (private) multiply/divide routines for the small multiplicands in from_string() and to_string().

  • Perhaps we could skip over any leading whitespace and/or +, like the standard conversion functions (std::stoi(), std::from_chars(), etc) do?

These string conversions look like they could easily be adapted to become streaming operators << and >>.



Finally, it's a great shame that you didn't include the unit tests in the review; that would have greatly aided reviewers (especially when making suggestions for improvement).






share|improve this answer











$endgroup$








  • 4




    $begingroup$
    Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
    $endgroup$
    – supercat
    May 23 at 19:37










  • $begingroup$
    That's a good point @supercat - fully agreed.
    $endgroup$
    – Toby Speight
    May 23 at 19:48











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "196"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f220809%2f128-bit-unsigned-integer%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

std::uint64_t is consistently misspelt throughout the code, and may be a poor choice anyway (since an exact 64-bit type need not be provided). It's better to use one of std::uint_fast64_t or std::uint_least64_t instead, for better portability. (Edit: as suggested by supercat in a comment, only the exact-width type will work correctly here, given the implicit masking we rely on for detecting carry and elsewhere, so disregard this recommendation: we want to fail to compile where this won't hold.)



I'd expect constructors from other intx::uint<> instantiations (obviously, the narrowing conversions should be explicit).



The ++ and -- operators could be implemented much more efficiently by using the members rather than converting and adding/subtracting. Unary - might also be better implemented element-wise.



It's good to see that you've included a specialization of std::numeric_limits for this type. A minor nitpick: I think that digits10 needs to round up rather than down. It's unfortunate that we're not allowed to specialize std::is_integral too.



A few problems in from_string():



  • Style (minor): writing sizeof(x) instead of simply sizeof x makes it look like x is a type name.

  • Actually, there's a more serious error in that line, in assuming that char is 8 bits (2 hex digits), rather than using CHAR_BIT - I'd write sizeof x * CHAR_BIT / 4 there for full portability.

  • Alternatively, allow redundant leading zeros by simply checking clz(x) >= 4 before shifting.

  • Also, why are octal inputs to from_string() treated as decimal? That's surprising to me.

  • It might be useful to have (private) multiply/divide routines for the small multiplicands in from_string() and to_string().

  • Perhaps we could skip over any leading whitespace and/or +, like the standard conversion functions (std::stoi(), std::from_chars(), etc) do?

These string conversions look like they could easily be adapted to become streaming operators << and >>.



Finally, it's a great shame that you didn't include the unit tests in the review; that would have greatly aided reviewers (especially when making suggestions for improvement).






share|improve this answer











$endgroup$








  • 4




    $begingroup$
    Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
    $endgroup$
    – supercat
    May 23 at 19:37










  • $begingroup$
    That's a good point @supercat - fully agreed.
    $endgroup$
    – Toby Speight
    May 23 at 19:48















13












$begingroup$

std::uint64_t is consistently misspelt throughout the code, and may be a poor choice anyway (since an exact 64-bit type need not be provided). It's better to use one of std::uint_fast64_t or std::uint_least64_t instead, for better portability. (Edit: as suggested by supercat in a comment, only the exact-width type will work correctly here, given the implicit masking we rely on for detecting carry and elsewhere, so disregard this recommendation: we want to fail to compile where this won't hold.)



I'd expect constructors from other intx::uint<> instantiations (obviously, the narrowing conversions should be explicit).



The ++ and -- operators could be implemented much more efficiently by using the members rather than converting and adding/subtracting. Unary - might also be better implemented element-wise.



It's good to see that you've included a specialization of std::numeric_limits for this type. A minor nitpick: I think that digits10 needs to round up rather than down. It's unfortunate that we're not allowed to specialize std::is_integral too.



A few problems in from_string():



  • Style (minor): writing sizeof(x) instead of simply sizeof x makes it look like x is a type name.

  • Actually, there's a more serious error in that line, in assuming that char is 8 bits (2 hex digits), rather than using CHAR_BIT - I'd write sizeof x * CHAR_BIT / 4 there for full portability.

  • Alternatively, allow redundant leading zeros by simply checking clz(x) >= 4 before shifting.

  • Also, why are octal inputs to from_string() treated as decimal? That's surprising to me.

  • It might be useful to have (private) multiply/divide routines for the small multiplicands in from_string() and to_string().

  • Perhaps we could skip over any leading whitespace and/or +, like the standard conversion functions (std::stoi(), std::from_chars(), etc) do?

These string conversions look like they could easily be adapted to become streaming operators << and >>.



Finally, it's a great shame that you didn't include the unit tests in the review; that would have greatly aided reviewers (especially when making suggestions for improvement).






share|improve this answer











$endgroup$








  • 4




    $begingroup$
    Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
    $endgroup$
    – supercat
    May 23 at 19:37










  • $begingroup$
    That's a good point @supercat - fully agreed.
    $endgroup$
    – Toby Speight
    May 23 at 19:48













13












13








13





$begingroup$

std::uint64_t is consistently misspelt throughout the code, and may be a poor choice anyway (since an exact 64-bit type need not be provided). It's better to use one of std::uint_fast64_t or std::uint_least64_t instead, for better portability. (Edit: as suggested by supercat in a comment, only the exact-width type will work correctly here, given the implicit masking we rely on for detecting carry and elsewhere, so disregard this recommendation: we want to fail to compile where this won't hold.)



I'd expect constructors from other intx::uint<> instantiations (obviously, the narrowing conversions should be explicit).



The ++ and -- operators could be implemented much more efficiently by using the members rather than converting and adding/subtracting. Unary - might also be better implemented element-wise.



It's good to see that you've included a specialization of std::numeric_limits for this type. A minor nitpick: I think that digits10 needs to round up rather than down. It's unfortunate that we're not allowed to specialize std::is_integral too.



A few problems in from_string():



  • Style (minor): writing sizeof(x) instead of simply sizeof x makes it look like x is a type name.

  • Actually, there's a more serious error in that line, in assuming that char is 8 bits (2 hex digits), rather than using CHAR_BIT - I'd write sizeof x * CHAR_BIT / 4 there for full portability.

  • Alternatively, allow redundant leading zeros by simply checking clz(x) >= 4 before shifting.

  • Also, why are octal inputs to from_string() treated as decimal? That's surprising to me.

  • It might be useful to have (private) multiply/divide routines for the small multiplicands in from_string() and to_string().

  • Perhaps we could skip over any leading whitespace and/or +, like the standard conversion functions (std::stoi(), std::from_chars(), etc) do?

These string conversions look like they could easily be adapted to become streaming operators << and >>.



Finally, it's a great shame that you didn't include the unit tests in the review; that would have greatly aided reviewers (especially when making suggestions for improvement).






share|improve this answer











$endgroup$



std::uint64_t is consistently misspelt throughout the code, and may be a poor choice anyway (since an exact 64-bit type need not be provided). It's better to use one of std::uint_fast64_t or std::uint_least64_t instead, for better portability. (Edit: as suggested by supercat in a comment, only the exact-width type will work correctly here, given the implicit masking we rely on for detecting carry and elsewhere, so disregard this recommendation: we want to fail to compile where this won't hold.)



I'd expect constructors from other intx::uint<> instantiations (obviously, the narrowing conversions should be explicit).



The ++ and -- operators could be implemented much more efficiently by using the members rather than converting and adding/subtracting. Unary - might also be better implemented element-wise.



It's good to see that you've included a specialization of std::numeric_limits for this type. A minor nitpick: I think that digits10 needs to round up rather than down. It's unfortunate that we're not allowed to specialize std::is_integral too.



A few problems in from_string():



  • Style (minor): writing sizeof(x) instead of simply sizeof x makes it look like x is a type name.

  • Actually, there's a more serious error in that line, in assuming that char is 8 bits (2 hex digits), rather than using CHAR_BIT - I'd write sizeof x * CHAR_BIT / 4 there for full portability.

  • Alternatively, allow redundant leading zeros by simply checking clz(x) >= 4 before shifting.

  • Also, why are octal inputs to from_string() treated as decimal? That's surprising to me.

  • It might be useful to have (private) multiply/divide routines for the small multiplicands in from_string() and to_string().

  • Perhaps we could skip over any leading whitespace and/or +, like the standard conversion functions (std::stoi(), std::from_chars(), etc) do?

These string conversions look like they could easily be adapted to become streaming operators << and >>.



Finally, it's a great shame that you didn't include the unit tests in the review; that would have greatly aided reviewers (especially when making suggestions for improvement).







share|improve this answer














share|improve this answer



share|improve this answer








edited May 23 at 19:51

























answered May 23 at 11:30









Toby SpeightToby Speight

28.9k742123




28.9k742123







  • 4




    $begingroup$
    Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
    $endgroup$
    – supercat
    May 23 at 19:37










  • $begingroup$
    That's a good point @supercat - fully agreed.
    $endgroup$
    – Toby Speight
    May 23 at 19:48












  • 4




    $begingroup$
    Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
    $endgroup$
    – supercat
    May 23 at 19:37










  • $begingroup$
    That's a good point @supercat - fully agreed.
    $endgroup$
    – Toby Speight
    May 23 at 19:48







4




4




$begingroup$
Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
$endgroup$
– supercat
May 23 at 19:37




$begingroup$
Code which uses objects of type uint64_t can rely upon any values being stored to such types being implicitly masked with 0xFFFFFFFFFFFFFFFFull, and will be rejected on any machines where such masking would not occur. Code which relies upon such masking but uses uint_least64_t would compile on machines where the masking would not occur, but may run incorrectly. Having such code be rejected would be preferable to having it run but produce wrong output.
$endgroup$
– supercat
May 23 at 19:37












$begingroup$
That's a good point @supercat - fully agreed.
$endgroup$
– Toby Speight
May 23 at 19:48




$begingroup$
That's a good point @supercat - fully agreed.
$endgroup$
– Toby Speight
May 23 at 19:48

















draft saved

draft discarded
















































Thanks for contributing an answer to Code Review Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f220809%2f128-bit-unsigned-integer%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company