Quantum corrections to geometryDirac operator on a Morita equivalent algebraCan we define spectral triples using the language of rigged Hilbert spaces?Various flavours of infinitesimalsQuantization and noncommutative deformationsQuantum dynamics on varieties and Salmon PrizesAre annihilation modules in the quantum torus necessarily principal?Quantum Field theory - integral notationExamples of $C^*$-algebras in Noncommutative Geometry from A. ConnesExtreme unitary minimal models of conformal field theoryCausal fermion systems fromm fractal geometryHausdorff dimension and von Neumann dimension

Quantum corrections to geometry


Dirac operator on a Morita equivalent algebraCan we define spectral triples using the language of rigged Hilbert spaces?Various flavours of infinitesimalsQuantization and noncommutative deformationsQuantum dynamics on varieties and Salmon PrizesAre annihilation modules in the quantum torus necessarily principal?Quantum Field theory - integral notationExamples of $C^*$-algebras in Noncommutative Geometry from A. ConnesExtreme unitary minimal models of conformal field theoryCausal fermion systems fromm fractal geometryHausdorff dimension and von Neumann dimension













17












$begingroup$


In this video Alain Connes made a comment about the ,,quantum corrections'' of the geometry. I would like to understand this notion in some details since I haven't found anything about this in the literature. I'm guessing that this notion is different to the notion of so called ,,inner fluctuations'' of the metric (see for example this discussion) and unlike the inner fluctuations, quantum corrections is less understood. So making the long story short my question is




What are quantum corrections of a geometry?




EDIT: Let me be a little bit more precise. One of the highlights of noncommutative geometry is that it can reproduce the complicated Lagrangian of the Standard Model from the so called spectral action and can be seen as pure gravity on some slightly noncommutative space of the form $M times F$. Here $F$ is not correctly defined as a set but manifests itself as a noncommutative algebra: the idea is that $F$ represents some noncommutative space. Since this noncommutativity is already present on the electroweak scale (i.e. distances approx. $10^-16textcm$) I guess that the quantum corrections of geometry should be:



  • already visible on this (much lower than Planck) energy scale

  • understood within the context of noncommutative geometry i.e. Dirac operators and spectral triples (if we take the lesson from the Standard Model seriously).

So let me state the problem once again, this time more precisely:




How to understand quantum corrections of geometry within the context of noncommutative geometry?











share|cite|improve this question











$endgroup$











  • $begingroup$
    This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
    $endgroup$
    – Kai
    May 21 at 3:57















17












$begingroup$


In this video Alain Connes made a comment about the ,,quantum corrections'' of the geometry. I would like to understand this notion in some details since I haven't found anything about this in the literature. I'm guessing that this notion is different to the notion of so called ,,inner fluctuations'' of the metric (see for example this discussion) and unlike the inner fluctuations, quantum corrections is less understood. So making the long story short my question is




What are quantum corrections of a geometry?




EDIT: Let me be a little bit more precise. One of the highlights of noncommutative geometry is that it can reproduce the complicated Lagrangian of the Standard Model from the so called spectral action and can be seen as pure gravity on some slightly noncommutative space of the form $M times F$. Here $F$ is not correctly defined as a set but manifests itself as a noncommutative algebra: the idea is that $F$ represents some noncommutative space. Since this noncommutativity is already present on the electroweak scale (i.e. distances approx. $10^-16textcm$) I guess that the quantum corrections of geometry should be:



  • already visible on this (much lower than Planck) energy scale

  • understood within the context of noncommutative geometry i.e. Dirac operators and spectral triples (if we take the lesson from the Standard Model seriously).

So let me state the problem once again, this time more precisely:




How to understand quantum corrections of geometry within the context of noncommutative geometry?











share|cite|improve this question











$endgroup$











  • $begingroup$
    This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
    $endgroup$
    – Kai
    May 21 at 3:57













17












17








17


9



$begingroup$


In this video Alain Connes made a comment about the ,,quantum corrections'' of the geometry. I would like to understand this notion in some details since I haven't found anything about this in the literature. I'm guessing that this notion is different to the notion of so called ,,inner fluctuations'' of the metric (see for example this discussion) and unlike the inner fluctuations, quantum corrections is less understood. So making the long story short my question is




What are quantum corrections of a geometry?




EDIT: Let me be a little bit more precise. One of the highlights of noncommutative geometry is that it can reproduce the complicated Lagrangian of the Standard Model from the so called spectral action and can be seen as pure gravity on some slightly noncommutative space of the form $M times F$. Here $F$ is not correctly defined as a set but manifests itself as a noncommutative algebra: the idea is that $F$ represents some noncommutative space. Since this noncommutativity is already present on the electroweak scale (i.e. distances approx. $10^-16textcm$) I guess that the quantum corrections of geometry should be:



  • already visible on this (much lower than Planck) energy scale

  • understood within the context of noncommutative geometry i.e. Dirac operators and spectral triples (if we take the lesson from the Standard Model seriously).

So let me state the problem once again, this time more precisely:




How to understand quantum corrections of geometry within the context of noncommutative geometry?











share|cite|improve this question











$endgroup$




In this video Alain Connes made a comment about the ,,quantum corrections'' of the geometry. I would like to understand this notion in some details since I haven't found anything about this in the literature. I'm guessing that this notion is different to the notion of so called ,,inner fluctuations'' of the metric (see for example this discussion) and unlike the inner fluctuations, quantum corrections is less understood. So making the long story short my question is




What are quantum corrections of a geometry?




EDIT: Let me be a little bit more precise. One of the highlights of noncommutative geometry is that it can reproduce the complicated Lagrangian of the Standard Model from the so called spectral action and can be seen as pure gravity on some slightly noncommutative space of the form $M times F$. Here $F$ is not correctly defined as a set but manifests itself as a noncommutative algebra: the idea is that $F$ represents some noncommutative space. Since this noncommutativity is already present on the electroweak scale (i.e. distances approx. $10^-16textcm$) I guess that the quantum corrections of geometry should be:



  • already visible on this (much lower than Planck) energy scale

  • understood within the context of noncommutative geometry i.e. Dirac operators and spectral triples (if we take the lesson from the Standard Model seriously).

So let me state the problem once again, this time more precisely:




How to understand quantum corrections of geometry within the context of noncommutative geometry?








qa.quantum-algebra noncommutative-geometry quantum-field-theory dirac-operator






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 21 at 7:48









Glorfindel

1,52241222




1,52241222










asked May 20 at 15:40









truebarantruebaran

2,98442061




2,98442061











  • $begingroup$
    This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
    $endgroup$
    – Kai
    May 21 at 3:57
















  • $begingroup$
    This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
    $endgroup$
    – Kai
    May 21 at 3:57















$begingroup$
This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
$endgroup$
– Kai
May 21 at 3:57




$begingroup$
This is rather old but might be a nice starting point for diving deeper into quantum gravity: [arxiv.org/pdf/gr-qc/0108040.pdf]
$endgroup$
– Kai
May 21 at 3:57










2 Answers
2






active

oldest

votes


















20












$begingroup$

Physicist chiming in; "quantum corrections of a geometry" represents the vague idea that gravity should be quantum.



Classically, gravity is a geometric theory: "reality" is modelled as a (Lorentzian) manifold, whose metric can be found -- in principle -- by solving a system of PDEs. To be more specific, the metric $g$ is such that the classical action $S[g]$ is stationary,
$$
S'[g]equiv0
$$

where $S$ is, say, the Hilbert action $S=int_X R$. (This is the canonical choice, which agrees with experiments to a great level of accuracy, but there are other choices that may work better in extreme regimes; a popular alternative is $S=int_X f(R)$ for some appropriate function $f$, cf. f(R) gravity).



Quantumly, this does not longer hold. Gravity should still be a geometric theory, but "quantum corrected", meaning that the paradigm changes but should reduce to the standard (classical) framework in the classical limit (schematically written as $hbarto0$). This is the problem of quantum gravity. The intuitive idea is that the metric is no longer fixed by a system of differential equations, but "fluctuates": there should be a "measure" $mu[g]$ in the "space of metrics" such that, when we perform a given experiment, a single metric $g$ is measured, drawn at random from this space of metrics, and with probability $mu[g]$. The "expectation value" for the geometry of spacetime is
$$
langle granglesimint mu[g]
$$

where the integral is over "the space of all metrics", whatever this means. A popular choice for the measure is $mu[g]=e^-S[g]/hbar$, which has the nice property that, in the $hbarto0$ limit, is peaked around the stationary point $S'[g]=0$, and so this measure appears to single out the classical configuration as a special point in this space.



Obviously, this is not a well-defined procedure, but it represents what we physicists would like to have. We leave it to the mathematicians to develop a theory of "integration over function spaces" strong enough to accommodate this our intuition.



But anyway, the take home message is that, classically, nature is supposed to be described as a manifold with a fixed (Lorentzian) metric. But if you go to very high energies (or very short distances), the classical picture breaks down and you need to take into account "quantum corrections": the metric is no longer fixed but becomes a random variable, peaked around the classical value but "fluctuating" according to some measure. Making this precise is the open problem in physics.






share|cite|improve this answer









$endgroup$




















    11












    $begingroup$

    I presume this refers to quantum corrections to the metric tensor. These are expected to be important in general relativity when the curvature of space-time approaches the Planck scale $sqrtGhbar/c^3simeq 10^-33$ cm.



    Some pointers to the literature:



    Einstein Equation with Quantum Corrections



    Quantum Corrections to the Schwarzschild and Kerr Metrics



    Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics



    The edit also asks "How to understand quantum corrections of geometry within the context of noncommutative geometry (NCG)?".$^*$ I do not think this understanding exists at present. NCG has given a geometrical description of the Standard Model of elementary particles, and there might be ways to unify this with gravity, but that development is still very much in its infancy.



    $^*$ The name noncommutative geometry is misleading, in the sense that it suggests a quantum theory (since we all know that non-commuting operators play such an essential role in the quantum world), but in fact the homological theory that constitutes NCG does not itself contain quantum effects.






    share|cite|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "504"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332029%2fquantum-corrections-to-geometry%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      20












      $begingroup$

      Physicist chiming in; "quantum corrections of a geometry" represents the vague idea that gravity should be quantum.



      Classically, gravity is a geometric theory: "reality" is modelled as a (Lorentzian) manifold, whose metric can be found -- in principle -- by solving a system of PDEs. To be more specific, the metric $g$ is such that the classical action $S[g]$ is stationary,
      $$
      S'[g]equiv0
      $$

      where $S$ is, say, the Hilbert action $S=int_X R$. (This is the canonical choice, which agrees with experiments to a great level of accuracy, but there are other choices that may work better in extreme regimes; a popular alternative is $S=int_X f(R)$ for some appropriate function $f$, cf. f(R) gravity).



      Quantumly, this does not longer hold. Gravity should still be a geometric theory, but "quantum corrected", meaning that the paradigm changes but should reduce to the standard (classical) framework in the classical limit (schematically written as $hbarto0$). This is the problem of quantum gravity. The intuitive idea is that the metric is no longer fixed by a system of differential equations, but "fluctuates": there should be a "measure" $mu[g]$ in the "space of metrics" such that, when we perform a given experiment, a single metric $g$ is measured, drawn at random from this space of metrics, and with probability $mu[g]$. The "expectation value" for the geometry of spacetime is
      $$
      langle granglesimint mu[g]
      $$

      where the integral is over "the space of all metrics", whatever this means. A popular choice for the measure is $mu[g]=e^-S[g]/hbar$, which has the nice property that, in the $hbarto0$ limit, is peaked around the stationary point $S'[g]=0$, and so this measure appears to single out the classical configuration as a special point in this space.



      Obviously, this is not a well-defined procedure, but it represents what we physicists would like to have. We leave it to the mathematicians to develop a theory of "integration over function spaces" strong enough to accommodate this our intuition.



      But anyway, the take home message is that, classically, nature is supposed to be described as a manifold with a fixed (Lorentzian) metric. But if you go to very high energies (or very short distances), the classical picture breaks down and you need to take into account "quantum corrections": the metric is no longer fixed but becomes a random variable, peaked around the classical value but "fluctuating" according to some measure. Making this precise is the open problem in physics.






      share|cite|improve this answer









      $endgroup$

















        20












        $begingroup$

        Physicist chiming in; "quantum corrections of a geometry" represents the vague idea that gravity should be quantum.



        Classically, gravity is a geometric theory: "reality" is modelled as a (Lorentzian) manifold, whose metric can be found -- in principle -- by solving a system of PDEs. To be more specific, the metric $g$ is such that the classical action $S[g]$ is stationary,
        $$
        S'[g]equiv0
        $$

        where $S$ is, say, the Hilbert action $S=int_X R$. (This is the canonical choice, which agrees with experiments to a great level of accuracy, but there are other choices that may work better in extreme regimes; a popular alternative is $S=int_X f(R)$ for some appropriate function $f$, cf. f(R) gravity).



        Quantumly, this does not longer hold. Gravity should still be a geometric theory, but "quantum corrected", meaning that the paradigm changes but should reduce to the standard (classical) framework in the classical limit (schematically written as $hbarto0$). This is the problem of quantum gravity. The intuitive idea is that the metric is no longer fixed by a system of differential equations, but "fluctuates": there should be a "measure" $mu[g]$ in the "space of metrics" such that, when we perform a given experiment, a single metric $g$ is measured, drawn at random from this space of metrics, and with probability $mu[g]$. The "expectation value" for the geometry of spacetime is
        $$
        langle granglesimint mu[g]
        $$

        where the integral is over "the space of all metrics", whatever this means. A popular choice for the measure is $mu[g]=e^-S[g]/hbar$, which has the nice property that, in the $hbarto0$ limit, is peaked around the stationary point $S'[g]=0$, and so this measure appears to single out the classical configuration as a special point in this space.



        Obviously, this is not a well-defined procedure, but it represents what we physicists would like to have. We leave it to the mathematicians to develop a theory of "integration over function spaces" strong enough to accommodate this our intuition.



        But anyway, the take home message is that, classically, nature is supposed to be described as a manifold with a fixed (Lorentzian) metric. But if you go to very high energies (or very short distances), the classical picture breaks down and you need to take into account "quantum corrections": the metric is no longer fixed but becomes a random variable, peaked around the classical value but "fluctuating" according to some measure. Making this precise is the open problem in physics.






        share|cite|improve this answer









        $endgroup$















          20












          20








          20





          $begingroup$

          Physicist chiming in; "quantum corrections of a geometry" represents the vague idea that gravity should be quantum.



          Classically, gravity is a geometric theory: "reality" is modelled as a (Lorentzian) manifold, whose metric can be found -- in principle -- by solving a system of PDEs. To be more specific, the metric $g$ is such that the classical action $S[g]$ is stationary,
          $$
          S'[g]equiv0
          $$

          where $S$ is, say, the Hilbert action $S=int_X R$. (This is the canonical choice, which agrees with experiments to a great level of accuracy, but there are other choices that may work better in extreme regimes; a popular alternative is $S=int_X f(R)$ for some appropriate function $f$, cf. f(R) gravity).



          Quantumly, this does not longer hold. Gravity should still be a geometric theory, but "quantum corrected", meaning that the paradigm changes but should reduce to the standard (classical) framework in the classical limit (schematically written as $hbarto0$). This is the problem of quantum gravity. The intuitive idea is that the metric is no longer fixed by a system of differential equations, but "fluctuates": there should be a "measure" $mu[g]$ in the "space of metrics" such that, when we perform a given experiment, a single metric $g$ is measured, drawn at random from this space of metrics, and with probability $mu[g]$. The "expectation value" for the geometry of spacetime is
          $$
          langle granglesimint mu[g]
          $$

          where the integral is over "the space of all metrics", whatever this means. A popular choice for the measure is $mu[g]=e^-S[g]/hbar$, which has the nice property that, in the $hbarto0$ limit, is peaked around the stationary point $S'[g]=0$, and so this measure appears to single out the classical configuration as a special point in this space.



          Obviously, this is not a well-defined procedure, but it represents what we physicists would like to have. We leave it to the mathematicians to develop a theory of "integration over function spaces" strong enough to accommodate this our intuition.



          But anyway, the take home message is that, classically, nature is supposed to be described as a manifold with a fixed (Lorentzian) metric. But if you go to very high energies (or very short distances), the classical picture breaks down and you need to take into account "quantum corrections": the metric is no longer fixed but becomes a random variable, peaked around the classical value but "fluctuating" according to some measure. Making this precise is the open problem in physics.






          share|cite|improve this answer









          $endgroup$



          Physicist chiming in; "quantum corrections of a geometry" represents the vague idea that gravity should be quantum.



          Classically, gravity is a geometric theory: "reality" is modelled as a (Lorentzian) manifold, whose metric can be found -- in principle -- by solving a system of PDEs. To be more specific, the metric $g$ is such that the classical action $S[g]$ is stationary,
          $$
          S'[g]equiv0
          $$

          where $S$ is, say, the Hilbert action $S=int_X R$. (This is the canonical choice, which agrees with experiments to a great level of accuracy, but there are other choices that may work better in extreme regimes; a popular alternative is $S=int_X f(R)$ for some appropriate function $f$, cf. f(R) gravity).



          Quantumly, this does not longer hold. Gravity should still be a geometric theory, but "quantum corrected", meaning that the paradigm changes but should reduce to the standard (classical) framework in the classical limit (schematically written as $hbarto0$). This is the problem of quantum gravity. The intuitive idea is that the metric is no longer fixed by a system of differential equations, but "fluctuates": there should be a "measure" $mu[g]$ in the "space of metrics" such that, when we perform a given experiment, a single metric $g$ is measured, drawn at random from this space of metrics, and with probability $mu[g]$. The "expectation value" for the geometry of spacetime is
          $$
          langle granglesimint mu[g]
          $$

          where the integral is over "the space of all metrics", whatever this means. A popular choice for the measure is $mu[g]=e^-S[g]/hbar$, which has the nice property that, in the $hbarto0$ limit, is peaked around the stationary point $S'[g]=0$, and so this measure appears to single out the classical configuration as a special point in this space.



          Obviously, this is not a well-defined procedure, but it represents what we physicists would like to have. We leave it to the mathematicians to develop a theory of "integration over function spaces" strong enough to accommodate this our intuition.



          But anyway, the take home message is that, classically, nature is supposed to be described as a manifold with a fixed (Lorentzian) metric. But if you go to very high energies (or very short distances), the classical picture breaks down and you need to take into account "quantum corrections": the metric is no longer fixed but becomes a random variable, peaked around the classical value but "fluctuating" according to some measure. Making this precise is the open problem in physics.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered May 20 at 16:13









          AccidentalFourierTransformAccidentalFourierTransform

          1,001215




          1,001215





















              11












              $begingroup$

              I presume this refers to quantum corrections to the metric tensor. These are expected to be important in general relativity when the curvature of space-time approaches the Planck scale $sqrtGhbar/c^3simeq 10^-33$ cm.



              Some pointers to the literature:



              Einstein Equation with Quantum Corrections



              Quantum Corrections to the Schwarzschild and Kerr Metrics



              Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics



              The edit also asks "How to understand quantum corrections of geometry within the context of noncommutative geometry (NCG)?".$^*$ I do not think this understanding exists at present. NCG has given a geometrical description of the Standard Model of elementary particles, and there might be ways to unify this with gravity, but that development is still very much in its infancy.



              $^*$ The name noncommutative geometry is misleading, in the sense that it suggests a quantum theory (since we all know that non-commuting operators play such an essential role in the quantum world), but in fact the homological theory that constitutes NCG does not itself contain quantum effects.






              share|cite|improve this answer











              $endgroup$

















                11












                $begingroup$

                I presume this refers to quantum corrections to the metric tensor. These are expected to be important in general relativity when the curvature of space-time approaches the Planck scale $sqrtGhbar/c^3simeq 10^-33$ cm.



                Some pointers to the literature:



                Einstein Equation with Quantum Corrections



                Quantum Corrections to the Schwarzschild and Kerr Metrics



                Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics



                The edit also asks "How to understand quantum corrections of geometry within the context of noncommutative geometry (NCG)?".$^*$ I do not think this understanding exists at present. NCG has given a geometrical description of the Standard Model of elementary particles, and there might be ways to unify this with gravity, but that development is still very much in its infancy.



                $^*$ The name noncommutative geometry is misleading, in the sense that it suggests a quantum theory (since we all know that non-commuting operators play such an essential role in the quantum world), but in fact the homological theory that constitutes NCG does not itself contain quantum effects.






                share|cite|improve this answer











                $endgroup$















                  11












                  11








                  11





                  $begingroup$

                  I presume this refers to quantum corrections to the metric tensor. These are expected to be important in general relativity when the curvature of space-time approaches the Planck scale $sqrtGhbar/c^3simeq 10^-33$ cm.



                  Some pointers to the literature:



                  Einstein Equation with Quantum Corrections



                  Quantum Corrections to the Schwarzschild and Kerr Metrics



                  Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics



                  The edit also asks "How to understand quantum corrections of geometry within the context of noncommutative geometry (NCG)?".$^*$ I do not think this understanding exists at present. NCG has given a geometrical description of the Standard Model of elementary particles, and there might be ways to unify this with gravity, but that development is still very much in its infancy.



                  $^*$ The name noncommutative geometry is misleading, in the sense that it suggests a quantum theory (since we all know that non-commuting operators play such an essential role in the quantum world), but in fact the homological theory that constitutes NCG does not itself contain quantum effects.






                  share|cite|improve this answer











                  $endgroup$



                  I presume this refers to quantum corrections to the metric tensor. These are expected to be important in general relativity when the curvature of space-time approaches the Planck scale $sqrtGhbar/c^3simeq 10^-33$ cm.



                  Some pointers to the literature:



                  Einstein Equation with Quantum Corrections



                  Quantum Corrections to the Schwarzschild and Kerr Metrics



                  Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics



                  The edit also asks "How to understand quantum corrections of geometry within the context of noncommutative geometry (NCG)?".$^*$ I do not think this understanding exists at present. NCG has given a geometrical description of the Standard Model of elementary particles, and there might be ways to unify this with gravity, but that development is still very much in its infancy.



                  $^*$ The name noncommutative geometry is misleading, in the sense that it suggests a quantum theory (since we all know that non-commuting operators play such an essential role in the quantum world), but in fact the homological theory that constitutes NCG does not itself contain quantum effects.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited May 20 at 19:13

























                  answered May 20 at 16:04









                  Carlo BeenakkerCarlo Beenakker

                  83.2k9196300




                  83.2k9196300



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to MathOverflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332029%2fquantum-corrections-to-geometry%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                      Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                      Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020