Why is the Eisenstein ideal paper so great?The story about Milnor proving the Fáry-Milnor theoremWhat is the shortest Ph.D. thesis?Who invented this puzzle about poisons?A 'standard patching argument' in Mazur's Eisenstein Ideal paperSimilarities between Post's Problem and Cohen's ForcingWhy did Bourbaki not use universal algebra?Who introduced the terms “equivalence relation” and “equivalence class”?about lemma 5.9 of Mazur's famous Eisenstein ideal paperHas anything (other than what is in the obituary witten by M. Noether) survived of Paul Gordan's defense of infinitesimals?Criterion for constancy in Mazur's Eisenstein ideal paper

Why is the Eisenstein ideal paper so great?


The story about Milnor proving the Fáry-Milnor theoremWhat is the shortest Ph.D. thesis?Who invented this puzzle about poisons?A 'standard patching argument' in Mazur's Eisenstein Ideal paperSimilarities between Post's Problem and Cohen's ForcingWhy did Bourbaki not use universal algebra?Who introduced the terms “equivalence relation” and “equivalence class”?about lemma 5.9 of Mazur's famous Eisenstein ideal paperHas anything (other than what is in the obituary witten by M. Noether) survived of Paul Gordan's defense of infinitesimals?Criterion for constancy in Mazur's Eisenstein ideal paper













61












$begingroup$


I am currently trying to decipher Mazur's Eisenstein ideal paper (not a comment about his clarity, rather about my current abilities). One of the reasons I am doing that is that many people told me that the paper was somehow revolutionary and introduced a new method into number theory.



Could somebody informed about these matters explain exactly what subsequent developments did the paper bring, what ideas in the paper were considered more-or-less original (at the time it was published), and exactly what difficulties did these ideas resolve that people failed to resolve before the paper was published (if any)?










share|cite|improve this question









$endgroup$
















    61












    $begingroup$


    I am currently trying to decipher Mazur's Eisenstein ideal paper (not a comment about his clarity, rather about my current abilities). One of the reasons I am doing that is that many people told me that the paper was somehow revolutionary and introduced a new method into number theory.



    Could somebody informed about these matters explain exactly what subsequent developments did the paper bring, what ideas in the paper were considered more-or-less original (at the time it was published), and exactly what difficulties did these ideas resolve that people failed to resolve before the paper was published (if any)?










    share|cite|improve this question









    $endgroup$














      61












      61








      61


      22



      $begingroup$


      I am currently trying to decipher Mazur's Eisenstein ideal paper (not a comment about his clarity, rather about my current abilities). One of the reasons I am doing that is that many people told me that the paper was somehow revolutionary and introduced a new method into number theory.



      Could somebody informed about these matters explain exactly what subsequent developments did the paper bring, what ideas in the paper were considered more-or-less original (at the time it was published), and exactly what difficulties did these ideas resolve that people failed to resolve before the paper was published (if any)?










      share|cite|improve this question









      $endgroup$




      I am currently trying to decipher Mazur's Eisenstein ideal paper (not a comment about his clarity, rather about my current abilities). One of the reasons I am doing that is that many people told me that the paper was somehow revolutionary and introduced a new method into number theory.



      Could somebody informed about these matters explain exactly what subsequent developments did the paper bring, what ideas in the paper were considered more-or-less original (at the time it was published), and exactly what difficulties did these ideas resolve that people failed to resolve before the paper was published (if any)?







      nt.number-theory ho.history-overview






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked May 20 at 14:36







      user140761



























          1 Answer
          1






          active

          oldest

          votes


















          95












          $begingroup$

          First, Mazur's paper is arguably the first paper where the new ideas (and language) of the Grothendieck revolution in algebraic geometry were fully embraced and crucially used in pure number theory. Here are several notable examples: Mazur makes crucial use of the theory of finite flat group schemes to understand the behavior of the $p$-adic Tate modules of Jacobians at the prime $p$. He studies modular forms of level one over finite rings (which need not lift to characteristic zero when the residue characteristic is $2$ or $3$). He proves theorems about mod-$p$ modular forms using what are essentially comparison theorems between etale cohomology and de Rham cohomology, and many more examples. The proof of the main theorem ($S5$, starting at page 156) is itself a very modern proof which fundamentally uses the viewpoint of $X_0(N)$ as a scheme.



          Second, there are many beautiful ideas which have their original in this paper: it contains many of the first innovative ideas for studying $2$-dimensional (and beyond) Galois representations, including the link between geometric properties (multiplicity one) and arithmetic properties, geometric conceptions for studying congruences between Galois representations, understanding the importance of the finite-flat property of group schemes, and the identification of the Gorenstein property. There is a theoretical $p$-descent on the Eisenstein quotient when previously descents were almost all explicit $2$-descents with specific equations. It introduces the winding quotient, and so on.



          Third, while it is a dense paper, it is dense in the best possible way: many of the small diversions could have made interesting papers on their own. Indeed, even close readers of the paper today can find connections between Mazur's asides and cutting edge mathematics. When Mazur raises a question in the text, it is almost invariably very interesting. One particular (great) habit that Mazur has is thinking about various isomorphisms and by pinning down various canonical choices identifies refined invariants. To take a random example, consider his exploration of the Shimura subgroup at the end of section 11. He finishes with a question which to a casual reader may as well be a throw-away remark. But this question was first solved by Merel, and more recently generalized in some very nice work of Emmanuel Lecouturier. Lecouturier's ideas then played an important role in the work of Michael Harris and Akshay Venkatesh. Again, one could give many more such examples of this. Very few papers have the richness of footnotes and asides that this paper does. Never forget that one of the hardest things in mathematics is coming up with interesting questions and observations, and this paper contains many great ones - it is bursting with the ideas of a truly creative mathematician.



          Finally, the result itself is amazing, and (pretty much) remains the only method available for proving the main theorem (the second proof due to Mazur is very related to this one). To give a sense of how great the theorem is, note that if $E$ is a semistable elliptic curve, then either $E$ is isogenous to a curve with a $p$-torsion point, or $E[p]$ is absolutely irreducible. This result (added for clarity: explicitly, Mazur's Theorem that $E/mathbfQ$ doesn't have a $p$-torsion point for $p > 7$) is crucially used in Wiles' proof of Fermat. One could certainly argue that without this paper (and how it transformed algebraic number theory) we would not have had Wiles' proof of Fermat, but it's even literally true that Mazur's theorem was (and remains so today, over 40 years later) an essential step in any proof of Fermat.






          share|cite|improve this answer











          $endgroup$








          • 26




            $begingroup$
            welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
            $endgroup$
            – Carlo Beenakker
            May 20 at 19:35







          • 12




            $begingroup$
            Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
            $endgroup$
            – Lycurgus cup
            May 21 at 21:37






          • 10




            $begingroup$
            I miss BCnrd, too.
            $endgroup$
            – Victor Protsak
            May 21 at 22:01











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332022%2fwhy-is-the-eisenstein-ideal-paper-so-great%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown
























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          95












          $begingroup$

          First, Mazur's paper is arguably the first paper where the new ideas (and language) of the Grothendieck revolution in algebraic geometry were fully embraced and crucially used in pure number theory. Here are several notable examples: Mazur makes crucial use of the theory of finite flat group schemes to understand the behavior of the $p$-adic Tate modules of Jacobians at the prime $p$. He studies modular forms of level one over finite rings (which need not lift to characteristic zero when the residue characteristic is $2$ or $3$). He proves theorems about mod-$p$ modular forms using what are essentially comparison theorems between etale cohomology and de Rham cohomology, and many more examples. The proof of the main theorem ($S5$, starting at page 156) is itself a very modern proof which fundamentally uses the viewpoint of $X_0(N)$ as a scheme.



          Second, there are many beautiful ideas which have their original in this paper: it contains many of the first innovative ideas for studying $2$-dimensional (and beyond) Galois representations, including the link between geometric properties (multiplicity one) and arithmetic properties, geometric conceptions for studying congruences between Galois representations, understanding the importance of the finite-flat property of group schemes, and the identification of the Gorenstein property. There is a theoretical $p$-descent on the Eisenstein quotient when previously descents were almost all explicit $2$-descents with specific equations. It introduces the winding quotient, and so on.



          Third, while it is a dense paper, it is dense in the best possible way: many of the small diversions could have made interesting papers on their own. Indeed, even close readers of the paper today can find connections between Mazur's asides and cutting edge mathematics. When Mazur raises a question in the text, it is almost invariably very interesting. One particular (great) habit that Mazur has is thinking about various isomorphisms and by pinning down various canonical choices identifies refined invariants. To take a random example, consider his exploration of the Shimura subgroup at the end of section 11. He finishes with a question which to a casual reader may as well be a throw-away remark. But this question was first solved by Merel, and more recently generalized in some very nice work of Emmanuel Lecouturier. Lecouturier's ideas then played an important role in the work of Michael Harris and Akshay Venkatesh. Again, one could give many more such examples of this. Very few papers have the richness of footnotes and asides that this paper does. Never forget that one of the hardest things in mathematics is coming up with interesting questions and observations, and this paper contains many great ones - it is bursting with the ideas of a truly creative mathematician.



          Finally, the result itself is amazing, and (pretty much) remains the only method available for proving the main theorem (the second proof due to Mazur is very related to this one). To give a sense of how great the theorem is, note that if $E$ is a semistable elliptic curve, then either $E$ is isogenous to a curve with a $p$-torsion point, or $E[p]$ is absolutely irreducible. This result (added for clarity: explicitly, Mazur's Theorem that $E/mathbfQ$ doesn't have a $p$-torsion point for $p > 7$) is crucially used in Wiles' proof of Fermat. One could certainly argue that without this paper (and how it transformed algebraic number theory) we would not have had Wiles' proof of Fermat, but it's even literally true that Mazur's theorem was (and remains so today, over 40 years later) an essential step in any proof of Fermat.






          share|cite|improve this answer











          $endgroup$








          • 26




            $begingroup$
            welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
            $endgroup$
            – Carlo Beenakker
            May 20 at 19:35







          • 12




            $begingroup$
            Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
            $endgroup$
            – Lycurgus cup
            May 21 at 21:37






          • 10




            $begingroup$
            I miss BCnrd, too.
            $endgroup$
            – Victor Protsak
            May 21 at 22:01















          95












          $begingroup$

          First, Mazur's paper is arguably the first paper where the new ideas (and language) of the Grothendieck revolution in algebraic geometry were fully embraced and crucially used in pure number theory. Here are several notable examples: Mazur makes crucial use of the theory of finite flat group schemes to understand the behavior of the $p$-adic Tate modules of Jacobians at the prime $p$. He studies modular forms of level one over finite rings (which need not lift to characteristic zero when the residue characteristic is $2$ or $3$). He proves theorems about mod-$p$ modular forms using what are essentially comparison theorems between etale cohomology and de Rham cohomology, and many more examples. The proof of the main theorem ($S5$, starting at page 156) is itself a very modern proof which fundamentally uses the viewpoint of $X_0(N)$ as a scheme.



          Second, there are many beautiful ideas which have their original in this paper: it contains many of the first innovative ideas for studying $2$-dimensional (and beyond) Galois representations, including the link between geometric properties (multiplicity one) and arithmetic properties, geometric conceptions for studying congruences between Galois representations, understanding the importance of the finite-flat property of group schemes, and the identification of the Gorenstein property. There is a theoretical $p$-descent on the Eisenstein quotient when previously descents were almost all explicit $2$-descents with specific equations. It introduces the winding quotient, and so on.



          Third, while it is a dense paper, it is dense in the best possible way: many of the small diversions could have made interesting papers on their own. Indeed, even close readers of the paper today can find connections between Mazur's asides and cutting edge mathematics. When Mazur raises a question in the text, it is almost invariably very interesting. One particular (great) habit that Mazur has is thinking about various isomorphisms and by pinning down various canonical choices identifies refined invariants. To take a random example, consider his exploration of the Shimura subgroup at the end of section 11. He finishes with a question which to a casual reader may as well be a throw-away remark. But this question was first solved by Merel, and more recently generalized in some very nice work of Emmanuel Lecouturier. Lecouturier's ideas then played an important role in the work of Michael Harris and Akshay Venkatesh. Again, one could give many more such examples of this. Very few papers have the richness of footnotes and asides that this paper does. Never forget that one of the hardest things in mathematics is coming up with interesting questions and observations, and this paper contains many great ones - it is bursting with the ideas of a truly creative mathematician.



          Finally, the result itself is amazing, and (pretty much) remains the only method available for proving the main theorem (the second proof due to Mazur is very related to this one). To give a sense of how great the theorem is, note that if $E$ is a semistable elliptic curve, then either $E$ is isogenous to a curve with a $p$-torsion point, or $E[p]$ is absolutely irreducible. This result (added for clarity: explicitly, Mazur's Theorem that $E/mathbfQ$ doesn't have a $p$-torsion point for $p > 7$) is crucially used in Wiles' proof of Fermat. One could certainly argue that without this paper (and how it transformed algebraic number theory) we would not have had Wiles' proof of Fermat, but it's even literally true that Mazur's theorem was (and remains so today, over 40 years later) an essential step in any proof of Fermat.






          share|cite|improve this answer











          $endgroup$








          • 26




            $begingroup$
            welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
            $endgroup$
            – Carlo Beenakker
            May 20 at 19:35







          • 12




            $begingroup$
            Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
            $endgroup$
            – Lycurgus cup
            May 21 at 21:37






          • 10




            $begingroup$
            I miss BCnrd, too.
            $endgroup$
            – Victor Protsak
            May 21 at 22:01













          95












          95








          95





          $begingroup$

          First, Mazur's paper is arguably the first paper where the new ideas (and language) of the Grothendieck revolution in algebraic geometry were fully embraced and crucially used in pure number theory. Here are several notable examples: Mazur makes crucial use of the theory of finite flat group schemes to understand the behavior of the $p$-adic Tate modules of Jacobians at the prime $p$. He studies modular forms of level one over finite rings (which need not lift to characteristic zero when the residue characteristic is $2$ or $3$). He proves theorems about mod-$p$ modular forms using what are essentially comparison theorems between etale cohomology and de Rham cohomology, and many more examples. The proof of the main theorem ($S5$, starting at page 156) is itself a very modern proof which fundamentally uses the viewpoint of $X_0(N)$ as a scheme.



          Second, there are many beautiful ideas which have their original in this paper: it contains many of the first innovative ideas for studying $2$-dimensional (and beyond) Galois representations, including the link between geometric properties (multiplicity one) and arithmetic properties, geometric conceptions for studying congruences between Galois representations, understanding the importance of the finite-flat property of group schemes, and the identification of the Gorenstein property. There is a theoretical $p$-descent on the Eisenstein quotient when previously descents were almost all explicit $2$-descents with specific equations. It introduces the winding quotient, and so on.



          Third, while it is a dense paper, it is dense in the best possible way: many of the small diversions could have made interesting papers on their own. Indeed, even close readers of the paper today can find connections between Mazur's asides and cutting edge mathematics. When Mazur raises a question in the text, it is almost invariably very interesting. One particular (great) habit that Mazur has is thinking about various isomorphisms and by pinning down various canonical choices identifies refined invariants. To take a random example, consider his exploration of the Shimura subgroup at the end of section 11. He finishes with a question which to a casual reader may as well be a throw-away remark. But this question was first solved by Merel, and more recently generalized in some very nice work of Emmanuel Lecouturier. Lecouturier's ideas then played an important role in the work of Michael Harris and Akshay Venkatesh. Again, one could give many more such examples of this. Very few papers have the richness of footnotes and asides that this paper does. Never forget that one of the hardest things in mathematics is coming up with interesting questions and observations, and this paper contains many great ones - it is bursting with the ideas of a truly creative mathematician.



          Finally, the result itself is amazing, and (pretty much) remains the only method available for proving the main theorem (the second proof due to Mazur is very related to this one). To give a sense of how great the theorem is, note that if $E$ is a semistable elliptic curve, then either $E$ is isogenous to a curve with a $p$-torsion point, or $E[p]$ is absolutely irreducible. This result (added for clarity: explicitly, Mazur's Theorem that $E/mathbfQ$ doesn't have a $p$-torsion point for $p > 7$) is crucially used in Wiles' proof of Fermat. One could certainly argue that without this paper (and how it transformed algebraic number theory) we would not have had Wiles' proof of Fermat, but it's even literally true that Mazur's theorem was (and remains so today, over 40 years later) an essential step in any proof of Fermat.






          share|cite|improve this answer











          $endgroup$



          First, Mazur's paper is arguably the first paper where the new ideas (and language) of the Grothendieck revolution in algebraic geometry were fully embraced and crucially used in pure number theory. Here are several notable examples: Mazur makes crucial use of the theory of finite flat group schemes to understand the behavior of the $p$-adic Tate modules of Jacobians at the prime $p$. He studies modular forms of level one over finite rings (which need not lift to characteristic zero when the residue characteristic is $2$ or $3$). He proves theorems about mod-$p$ modular forms using what are essentially comparison theorems between etale cohomology and de Rham cohomology, and many more examples. The proof of the main theorem ($S5$, starting at page 156) is itself a very modern proof which fundamentally uses the viewpoint of $X_0(N)$ as a scheme.



          Second, there are many beautiful ideas which have their original in this paper: it contains many of the first innovative ideas for studying $2$-dimensional (and beyond) Galois representations, including the link between geometric properties (multiplicity one) and arithmetic properties, geometric conceptions for studying congruences between Galois representations, understanding the importance of the finite-flat property of group schemes, and the identification of the Gorenstein property. There is a theoretical $p$-descent on the Eisenstein quotient when previously descents were almost all explicit $2$-descents with specific equations. It introduces the winding quotient, and so on.



          Third, while it is a dense paper, it is dense in the best possible way: many of the small diversions could have made interesting papers on their own. Indeed, even close readers of the paper today can find connections between Mazur's asides and cutting edge mathematics. When Mazur raises a question in the text, it is almost invariably very interesting. One particular (great) habit that Mazur has is thinking about various isomorphisms and by pinning down various canonical choices identifies refined invariants. To take a random example, consider his exploration of the Shimura subgroup at the end of section 11. He finishes with a question which to a casual reader may as well be a throw-away remark. But this question was first solved by Merel, and more recently generalized in some very nice work of Emmanuel Lecouturier. Lecouturier's ideas then played an important role in the work of Michael Harris and Akshay Venkatesh. Again, one could give many more such examples of this. Very few papers have the richness of footnotes and asides that this paper does. Never forget that one of the hardest things in mathematics is coming up with interesting questions and observations, and this paper contains many great ones - it is bursting with the ideas of a truly creative mathematician.



          Finally, the result itself is amazing, and (pretty much) remains the only method available for proving the main theorem (the second proof due to Mazur is very related to this one). To give a sense of how great the theorem is, note that if $E$ is a semistable elliptic curve, then either $E$ is isogenous to a curve with a $p$-torsion point, or $E[p]$ is absolutely irreducible. This result (added for clarity: explicitly, Mazur's Theorem that $E/mathbfQ$ doesn't have a $p$-torsion point for $p > 7$) is crucially used in Wiles' proof of Fermat. One could certainly argue that without this paper (and how it transformed algebraic number theory) we would not have had Wiles' proof of Fermat, but it's even literally true that Mazur's theorem was (and remains so today, over 40 years later) an essential step in any proof of Fermat.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited May 21 at 21:35

























          answered May 20 at 19:29









          Lycurgus cupLycurgus cup

          79146




          79146







          • 26




            $begingroup$
            welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
            $endgroup$
            – Carlo Beenakker
            May 20 at 19:35







          • 12




            $begingroup$
            Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
            $endgroup$
            – Lycurgus cup
            May 21 at 21:37






          • 10




            $begingroup$
            I miss BCnrd, too.
            $endgroup$
            – Victor Protsak
            May 21 at 22:01












          • 26




            $begingroup$
            welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
            $endgroup$
            – Carlo Beenakker
            May 20 at 19:35







          • 12




            $begingroup$
            Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
            $endgroup$
            – Lycurgus cup
            May 21 at 21:37






          • 10




            $begingroup$
            I miss BCnrd, too.
            $endgroup$
            – Victor Protsak
            May 21 at 22:01







          26




          26




          $begingroup$
          welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
          $endgroup$
          – Carlo Beenakker
          May 20 at 19:35





          $begingroup$
          welcome to Mathoverflow, Lycergus cup (Lycurgus?) Here's hoping for many more highly informative answers such as this one!
          $endgroup$
          – Carlo Beenakker
          May 20 at 19:35





          12




          12




          $begingroup$
          Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
          $endgroup$
          – Lycurgus cup
          May 21 at 21:37




          $begingroup$
          Hmmm, that's a lot of votes for what is a reasonable but fairly anodyne description of Mazur's work that is well known (to those who know it). I can only conclude that you guys must really really miss Matthew Emerton.
          $endgroup$
          – Lycurgus cup
          May 21 at 21:37




          10




          10




          $begingroup$
          I miss BCnrd, too.
          $endgroup$
          – Victor Protsak
          May 21 at 22:01




          $begingroup$
          I miss BCnrd, too.
          $endgroup$
          – Victor Protsak
          May 21 at 22:01

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332022%2fwhy-is-the-eisenstein-ideal-paper-so-great%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

          Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

          Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020