Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation
How do you build a story from a world?
Why is c4 bad when playing the London against a King's Indian?
Working in the USA for living expenses only; allowed on VWP?
Do I include animal companions when calculating difficulty of an encounter?
1980s (or earlier) book where people live a long time but they have short memories
Company is asking me to work from overseas, but wants me to take a paycut
You've spoiled/damaged the card
What are they doing to this poor rocket?
What is the advantage of carrying a tripod and ND-filters when you could use image stacking instead?
How to make thick Asian sauces?
When writing an error prompt, should we end the sentence with a exclamation mark or a dot?
Is it OK to bring delicacies from hometown as tokens of gratitude for an out-of-town interview?
Do manufacturers try make their components as close to ideal ones as possible?
Could the Missouri River be running while Lake Michigan was frozen several meters deep?
What is a simple, physical situation where complex numbers emerge naturally?
Java 8: How to convert String to Map<String,List<String>>?
California: "For quality assurance, this phone call is being recorded"
Is the decompression of compressed and encrypted data without decryption also theoretically impossible?
Did thousands of women die every year due to illegal abortions before Roe v. Wade?
What do we gain with higher order logics?
What's the correct term for a waitress in the Middle Ages?
Short story written from alien perspective with this line: "It's too bright to look at, so they don't"
Will TSA allow me to carry a Continuous Positive Airway Pressure (CPAP) device?
What is the right way to float a home lab?
Circuit construction for execution of conditional statements using least significant bit
How are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
add a comment |
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
add a comment |
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
algorithm circuit-construction
edited May 18 at 23:29
Sanchayan Dutta
7,44841660
7,44841660
asked May 18 at 18:22
UpstartUpstart
34019
34019
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "694"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6188%2fcircuit-construction-for-execution-of-conditional-statements-using-least-signifi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
edited May 18 at 23:21
answered May 18 at 23:11
Arthur-1Arthur-1
1266
1266
add a comment |
add a comment |
Thanks for contributing an answer to Quantum Computing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6188%2fcircuit-construction-for-execution-of-conditional-statements-using-least-signifi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown