A case of the sniffles The 2019 Stack Overflow Developer Survey Results Are InCheckerboard Infection100 Prisoners' Names in BoxesThe First Interplanetary Arithmetic SummitFarm dimensionsMysterious Murder Mystery 5Ernie and the Pirates of the CaribbeanCan the policeman actually catch the thief, instead of shooting?The Cucumber ParadoxEspionage at the Chinese RestaurantErnie and the Case of the Singing SistersA man is trapped in a cage and wants to escape but doesn't, even when given the keys. Why?
Why isn't airport relocation done gradually?
Confusion about non-derivable continuous functions
How to answer pointed "are you quitting" questioning when I don't want them to suspect
How can I create a character who can assume the widest possible range of creature sizes?
How come people say “Would of”?
Why is the maximum length of openwrt’s root password 8 characters?
Output the Arecibo Message
Springs with some finite mass
How to reverse every other sublist of a list?
If the Wish spell is used to duplicate the effect of Simulacrum, are existing duplicates destroyed?
How to deal with fear of taking dependencies
How was Skylab's orbit inclination chosen?
Does duplicating a spell with Wish count as casting that spell?
Geography at the pixel level
Is domain driven design an anti-SQL pattern?
Looking for best latin term for a legal document
Why Did Howard Stark Use All The Vibranium They Had On A Prototype Shield?
How to make payment on the internet without leaving a money trail?
Does a dangling wire really electrocute me if I'm standing in water?
What is a mixture ratio of propellant?
Where does the "burst of radiance" from Holy Weapon originate?
Are USB sockets on wall outlets live all the time, even when the switch is off?
What is the best strategy for white in this position?
"To split hairs" vs "To be pedantic"
A case of the sniffles
The 2019 Stack Overflow Developer Survey Results Are InCheckerboard Infection100 Prisoners' Names in BoxesThe First Interplanetary Arithmetic SummitFarm dimensionsMysterious Murder Mystery 5Ernie and the Pirates of the CaribbeanCan the policeman actually catch the thief, instead of shooting?The Cucumber ParadoxEspionage at the Chinese RestaurantErnie and the Case of the Singing SistersA man is trapped in a cage and wants to escape but doesn't, even when given the keys. Why?
$begingroup$
The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.
The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.
If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)
mathematics situation
$endgroup$
add a comment |
$begingroup$
The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.
The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.
If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)
mathematics situation
$endgroup$
2
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
1
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
1
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
2
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06
add a comment |
$begingroup$
The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.
The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.
If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)
mathematics situation
$endgroup$
The cubicle farm at the Colla-R water treatment plant is laid out in a neat square: eight rows of eight cubicles with a narrow corridor between each cubicle (in the diagram the thin black lines are the corridors). Each cubicle is currently occupied by an employee, and no employees are on holiday.
The cubicles identified by being coloured red have ill employees in them: they have contracted some water-borne illness and are infectious. Due to the layout of the cubicles, a healthy employee only contracts the illness if they have two ill immediate neighbours in the four cardinal compass directions (you may take North to be pointing upwards relative to the page). For example, the cubicle at the end of the second row from the top contains an employee who is about to become ill. Ill employees do not go home, do not recover, are not allowed to leave their cubicle, but (luckily for them) do not die. As per company policy, the Colla-R HR department have now quarantined the cubicle farm, and no employee may leave until either everyone is ill, or everyone is well.
If, at the start of each hour, any healthy employee who has two ill neighbours as described becomes ill and immediately infectious, will all the employees fall ill? If not, what is the minimum number and location of ill employees that would ensure they do all fall ill? (The Colla-R HR department would of course like to avoid this happening.)
mathematics situation
mathematics situation
asked Apr 5 at 16:26
postmortespostmortes
520212
520212
2
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
1
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
1
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
2
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06
add a comment |
2
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
1
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
1
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
2
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06
2
2
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
1
1
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
1
1
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
2
2
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Answer 1
No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.
Suggestion for the minimum
If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.
Proof that this is the minimum
One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).
Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.
$endgroup$
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "559"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81449%2fa-case-of-the-sniffles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Answer 1
No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.
Suggestion for the minimum
If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.
Proof that this is the minimum
One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).
Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.
$endgroup$
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
add a comment |
$begingroup$
Answer 1
No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.
Suggestion for the minimum
If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.
Proof that this is the minimum
One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).
Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.
$endgroup$
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
add a comment |
$begingroup$
Answer 1
No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.
Suggestion for the minimum
If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.
Proof that this is the minimum
One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).
Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.
$endgroup$
Answer 1
No, they will not all fall ill. In particular, none of the employees in the top (or bottom) row will fall ill as they need to have at least one infected neighbour in the same row. Since none are ill in the beginning, none will become ill.
Suggestion for the minimum
If all of the cubicles on a diagonal have ill employees then everybody will eventually fall ill. So this gives an upper bound of 8 for the minimum.
Proof that this is the minimum
One important thing to notice is that the total perimeter of the ill area never increases (this is due to the fact that the two cubicle walls providing the infection get absorbed into the infected area in the next step producing, at most, two new cubicle walls to the infected perimeter).
Now, suppose there are just $7$ ill employees. Then, the total infected perimeter is at most $4 times 7 =28$. This can never increase, hence, the infection cannot cover all employees since the total perimeter is $32$.
edited Apr 5 at 17:02
answered Apr 5 at 16:34
hexominohexomino
46.3k4141220
46.3k4141220
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
add a comment |
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
1
1
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
$begingroup$
Answer 1 is correct; if you can prove 8 as the minimum you get the tick :)
$endgroup$
– postmortes
Apr 5 at 16:36
add a comment |
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81449%2fa-case-of-the-sniffles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
"no employee may leave until either everyone is ill, or everyone is well" - how would the latter be possible? You said ill employees do not recover.
$endgroup$
– Rand al'Thor
Apr 5 at 16:33
1
$begingroup$
@Randal'Thor and now you know something about the HR practices here....
$endgroup$
– postmortes
Apr 5 at 16:34
1
$begingroup$
@Randal'Thor less jokingly though, it's just to cover off all the edge cases
$endgroup$
– postmortes
Apr 5 at 16:35
2
$begingroup$
Same second question.
$endgroup$
– noedne
Apr 5 at 17:06