how to check a propriety using r studio The 2019 Stack Overflow Developer Survey Results Are InSquare root of Chi-square distribution tends to $N(0,1)$Relationship between chi-squared and standard normal distributions.How to check $H_0$ hypothesis using Pearson's criteria?Bivariate Normal Distribution Problem vs MarginalsShow that $Y = sum_i=1^n Y_i$ is distributed as $chi _2n^2$.If I have that $X sim chi^2_1$ and $Y sim chi^2_2$ are independent, how can I show that $4XY sim Y^2$?Chi-square test to check sampled varianceNormal distributionHypothesis testing: mean comparisonShow $1 + z_alpha/2/sqrtn approx chi^2_alpha/2 (2n)/(2n)$

Pristine Bit Checking

Are USB sockets on wall outlets live all the time, even when the switch is off?

What do the Banks children have against barley water?

Output the Arecibo Message

How long do I have to send payment?

Confusion about non-derivable continuous functions

What does "sndry explns" mean in one of the Hitchhiker's guide books?

Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints

Lethal sonic weapons

Is it possible for the two major parties in the UK to form a coalition with each other instead of a much smaller party?

On the insanity of kings as an argument against Monarchy

Does duplicating a spell with Wish count as casting that spell?

Is domain driven design an anti-SQL pattern?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Does a dangling wire really electrocute me if I'm standing in water?

What is this 4-propeller plane?

Is bread bad for ducks?

Patience, young "Padovan"

Extreme, unacceptable situation and I can't attend work tomorrow morning

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Inline version of a function returns different value then non-inline version

Where to refill my bottle in India?

Access elements in std::string where positon of string is greater than its size

Where does the "burst of radiance" from Holy Weapon originate?



how to check a propriety using r studio



The 2019 Stack Overflow Developer Survey Results Are InSquare root of Chi-square distribution tends to $N(0,1)$Relationship between chi-squared and standard normal distributions.How to check $H_0$ hypothesis using Pearson's criteria?Bivariate Normal Distribution Problem vs MarginalsShow that $Y = sum_i=1^n Y_i$ is distributed as $chi _2n^2$.If I have that $X sim chi^2_1$ and $Y sim chi^2_2$ are independent, how can I show that $4XY sim Y^2$?Chi-square test to check sampled varianceNormal distributionHypothesis testing: mean comparisonShow $1 + z_alpha/2/sqrtn approx chi^2_alpha/2 (2n)/(2n)$










2












$begingroup$


I have to check that this propriety



$Z sim N(0,1)$ and $Usim chi ^2(10)$ then $ Z/sqrtU/10 sim T(10)$



is true using r studio if anyone can help , much appreciate










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
    $endgroup$
    – angryavian
    Apr 5 at 16:52










  • $begingroup$
    @angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
    $endgroup$
    – Raskolnikov
    Apr 5 at 19:11










  • $begingroup$
    @angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
    $endgroup$
    – JJJ
    Apr 5 at 21:07















2












$begingroup$


I have to check that this propriety



$Z sim N(0,1)$ and $Usim chi ^2(10)$ then $ Z/sqrtU/10 sim T(10)$



is true using r studio if anyone can help , much appreciate










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
    $endgroup$
    – angryavian
    Apr 5 at 16:52










  • $begingroup$
    @angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
    $endgroup$
    – Raskolnikov
    Apr 5 at 19:11










  • $begingroup$
    @angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
    $endgroup$
    – JJJ
    Apr 5 at 21:07













2












2








2


1



$begingroup$


I have to check that this propriety



$Z sim N(0,1)$ and $Usim chi ^2(10)$ then $ Z/sqrtU/10 sim T(10)$



is true using r studio if anyone can help , much appreciate










share|cite|improve this question









$endgroup$




I have to check that this propriety



$Z sim N(0,1)$ and $Usim chi ^2(10)$ then $ Z/sqrtU/10 sim T(10)$



is true using r studio if anyone can help , much appreciate







probability statistics hypothesis-testing






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 5 at 16:46









JoshuaKJoshuaK

456




456







  • 3




    $begingroup$
    What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
    $endgroup$
    – angryavian
    Apr 5 at 16:52










  • $begingroup$
    @angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
    $endgroup$
    – Raskolnikov
    Apr 5 at 19:11










  • $begingroup$
    @angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
    $endgroup$
    – JJJ
    Apr 5 at 21:07












  • 3




    $begingroup$
    What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
    $endgroup$
    – angryavian
    Apr 5 at 16:52










  • $begingroup$
    @angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
    $endgroup$
    – Raskolnikov
    Apr 5 at 19:11










  • $begingroup$
    @angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
    $endgroup$
    – JJJ
    Apr 5 at 21:07







3




3




$begingroup$
What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
$endgroup$
– angryavian
Apr 5 at 16:52




$begingroup$
What do you mean by "verify using R"? A programming language cannot rigorously verify this although it may produce evidence suggesting it is true. If you read the definition of a $t$-distribution, then your question follows almost immediately.
$endgroup$
– angryavian
Apr 5 at 16:52












$begingroup$
@angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
$endgroup$
– Raskolnikov
Apr 5 at 19:11




$begingroup$
@angryavian : Maybe not in r studio (although I don't know all the capabilities of R), but there's a thing called computer-assisted proofs.
$endgroup$
– Raskolnikov
Apr 5 at 19:11












$begingroup$
@angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
$endgroup$
– JJJ
Apr 5 at 21:07




$begingroup$
@angryavian you can use R to sample from the distributions in question and use that to do some hypothesis testing.
$endgroup$
– JJJ
Apr 5 at 21:07










3 Answers
3






active

oldest

votes


















3












$begingroup$

One approach could be simulation of thousands of values:



  • Simulate $Z$ using rnorm

  • Simulate $U$ using rchisq

  • Do the division $Y = Z / sqrtU / 10$

  • Simulate the same number of $T$ from the hypothesised $t$-distribution using rt

  • Sort $Y$ and $T$ and plot them against each other - you want to see a diagonal straight line essentially $y=x$ with a little noise; this is visual demonstration though not a proof that the distributions are the same

You can do similar things with the qqplot function if you know what you are doing






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    I agree with @angryavian that you can't do a 'proof' in R.
    Also, it is crucial to state that random variables $Z$
    and $U$ are independent. Then $Y = fracZU/sqrt10 sim mathsfT(10)$ by definition.



    Here is R code to simulate a million values of $T$ [as in the Answer of @Henry (+1)], then to compare their histogram with the density of $mathsfT(10).$ This
    is a graphical demonstration that $T$ has (at least very nearly) the claimed t distribution.



    set.seed(405) # for reproducibility
    z = rnorm(10^6); u = rchisq(10^6, 10)
    y = z/sqrt(u/10)
    hist(y, prob=T, br=50, col="skyblue2")
    curve(dt(x, 10), add=T, lwd=2)


    enter image description here



    Furthermore, you could check that the quantiles of $Y$ very nearly match the theoretical quantiles of $mathsfT(10).$



    summary(y)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    -10.641101 -0.699409 0.000059 0.000221 0.701253 9.802922
    qt(c(.25,.5,.75), 10)
    [1] -0.6998121 0.0000000 0.6998121


    The summary above also shows that $bar Y approx 0.$ And the sample variance of the simulated values of $Y$ is very nearly the variance $nu/(nu - 2) = 10/8 = 1.25$ of Student's t distribution with $nu = 10$ degrees of freedom.
    [In effect, two of the moments suggested by #GeorgeDewhirts (+1).]



    var(y); 10/8
    [1] 1.250115
    [1] 1.25


    Also, you could do a Kolmogorov-Smirnov goodness-of-fit test on the first 5000 values of $Y$ and check that the P-value exceeds 5%. (The K-S test in R is limited to 5000 observations.) Roughly speaking, this is a formal, quantitative way to do @Henry's comparison of sorted observations.



    ks.test(y[1:5000], pt, 10)

    One-sample Kolmogorov-Smirnov test

    data: y[1:5000]
    D = 0.013661, p-value = 0.3083
    alternative hypothesis: two-sided





    share|cite|improve this answer











    $endgroup$




















      1












      $begingroup$

      You could compare the moments of your distribution with the theoretical moments of $T(10)$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176151%2fhow-to-check-a-propriety-using-r-studio%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        One approach could be simulation of thousands of values:



        • Simulate $Z$ using rnorm

        • Simulate $U$ using rchisq

        • Do the division $Y = Z / sqrtU / 10$

        • Simulate the same number of $T$ from the hypothesised $t$-distribution using rt

        • Sort $Y$ and $T$ and plot them against each other - you want to see a diagonal straight line essentially $y=x$ with a little noise; this is visual demonstration though not a proof that the distributions are the same

        You can do similar things with the qqplot function if you know what you are doing






        share|cite|improve this answer









        $endgroup$

















          3












          $begingroup$

          One approach could be simulation of thousands of values:



          • Simulate $Z$ using rnorm

          • Simulate $U$ using rchisq

          • Do the division $Y = Z / sqrtU / 10$

          • Simulate the same number of $T$ from the hypothesised $t$-distribution using rt

          • Sort $Y$ and $T$ and plot them against each other - you want to see a diagonal straight line essentially $y=x$ with a little noise; this is visual demonstration though not a proof that the distributions are the same

          You can do similar things with the qqplot function if you know what you are doing






          share|cite|improve this answer









          $endgroup$















            3












            3








            3





            $begingroup$

            One approach could be simulation of thousands of values:



            • Simulate $Z$ using rnorm

            • Simulate $U$ using rchisq

            • Do the division $Y = Z / sqrtU / 10$

            • Simulate the same number of $T$ from the hypothesised $t$-distribution using rt

            • Sort $Y$ and $T$ and plot them against each other - you want to see a diagonal straight line essentially $y=x$ with a little noise; this is visual demonstration though not a proof that the distributions are the same

            You can do similar things with the qqplot function if you know what you are doing






            share|cite|improve this answer









            $endgroup$



            One approach could be simulation of thousands of values:



            • Simulate $Z$ using rnorm

            • Simulate $U$ using rchisq

            • Do the division $Y = Z / sqrtU / 10$

            • Simulate the same number of $T$ from the hypothesised $t$-distribution using rt

            • Sort $Y$ and $T$ and plot them against each other - you want to see a diagonal straight line essentially $y=x$ with a little noise; this is visual demonstration though not a proof that the distributions are the same

            You can do similar things with the qqplot function if you know what you are doing







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 5 at 17:52









            HenryHenry

            101k482170




            101k482170





















                2












                $begingroup$

                I agree with @angryavian that you can't do a 'proof' in R.
                Also, it is crucial to state that random variables $Z$
                and $U$ are independent. Then $Y = fracZU/sqrt10 sim mathsfT(10)$ by definition.



                Here is R code to simulate a million values of $T$ [as in the Answer of @Henry (+1)], then to compare their histogram with the density of $mathsfT(10).$ This
                is a graphical demonstration that $T$ has (at least very nearly) the claimed t distribution.



                set.seed(405) # for reproducibility
                z = rnorm(10^6); u = rchisq(10^6, 10)
                y = z/sqrt(u/10)
                hist(y, prob=T, br=50, col="skyblue2")
                curve(dt(x, 10), add=T, lwd=2)


                enter image description here



                Furthermore, you could check that the quantiles of $Y$ very nearly match the theoretical quantiles of $mathsfT(10).$



                summary(y)
                Min. 1st Qu. Median Mean 3rd Qu. Max.
                -10.641101 -0.699409 0.000059 0.000221 0.701253 9.802922
                qt(c(.25,.5,.75), 10)
                [1] -0.6998121 0.0000000 0.6998121


                The summary above also shows that $bar Y approx 0.$ And the sample variance of the simulated values of $Y$ is very nearly the variance $nu/(nu - 2) = 10/8 = 1.25$ of Student's t distribution with $nu = 10$ degrees of freedom.
                [In effect, two of the moments suggested by #GeorgeDewhirts (+1).]



                var(y); 10/8
                [1] 1.250115
                [1] 1.25


                Also, you could do a Kolmogorov-Smirnov goodness-of-fit test on the first 5000 values of $Y$ and check that the P-value exceeds 5%. (The K-S test in R is limited to 5000 observations.) Roughly speaking, this is a formal, quantitative way to do @Henry's comparison of sorted observations.



                ks.test(y[1:5000], pt, 10)

                One-sample Kolmogorov-Smirnov test

                data: y[1:5000]
                D = 0.013661, p-value = 0.3083
                alternative hypothesis: two-sided





                share|cite|improve this answer











                $endgroup$

















                  2












                  $begingroup$

                  I agree with @angryavian that you can't do a 'proof' in R.
                  Also, it is crucial to state that random variables $Z$
                  and $U$ are independent. Then $Y = fracZU/sqrt10 sim mathsfT(10)$ by definition.



                  Here is R code to simulate a million values of $T$ [as in the Answer of @Henry (+1)], then to compare their histogram with the density of $mathsfT(10).$ This
                  is a graphical demonstration that $T$ has (at least very nearly) the claimed t distribution.



                  set.seed(405) # for reproducibility
                  z = rnorm(10^6); u = rchisq(10^6, 10)
                  y = z/sqrt(u/10)
                  hist(y, prob=T, br=50, col="skyblue2")
                  curve(dt(x, 10), add=T, lwd=2)


                  enter image description here



                  Furthermore, you could check that the quantiles of $Y$ very nearly match the theoretical quantiles of $mathsfT(10).$



                  summary(y)
                  Min. 1st Qu. Median Mean 3rd Qu. Max.
                  -10.641101 -0.699409 0.000059 0.000221 0.701253 9.802922
                  qt(c(.25,.5,.75), 10)
                  [1] -0.6998121 0.0000000 0.6998121


                  The summary above also shows that $bar Y approx 0.$ And the sample variance of the simulated values of $Y$ is very nearly the variance $nu/(nu - 2) = 10/8 = 1.25$ of Student's t distribution with $nu = 10$ degrees of freedom.
                  [In effect, two of the moments suggested by #GeorgeDewhirts (+1).]



                  var(y); 10/8
                  [1] 1.250115
                  [1] 1.25


                  Also, you could do a Kolmogorov-Smirnov goodness-of-fit test on the first 5000 values of $Y$ and check that the P-value exceeds 5%. (The K-S test in R is limited to 5000 observations.) Roughly speaking, this is a formal, quantitative way to do @Henry's comparison of sorted observations.



                  ks.test(y[1:5000], pt, 10)

                  One-sample Kolmogorov-Smirnov test

                  data: y[1:5000]
                  D = 0.013661, p-value = 0.3083
                  alternative hypothesis: two-sided





                  share|cite|improve this answer











                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    I agree with @angryavian that you can't do a 'proof' in R.
                    Also, it is crucial to state that random variables $Z$
                    and $U$ are independent. Then $Y = fracZU/sqrt10 sim mathsfT(10)$ by definition.



                    Here is R code to simulate a million values of $T$ [as in the Answer of @Henry (+1)], then to compare their histogram with the density of $mathsfT(10).$ This
                    is a graphical demonstration that $T$ has (at least very nearly) the claimed t distribution.



                    set.seed(405) # for reproducibility
                    z = rnorm(10^6); u = rchisq(10^6, 10)
                    y = z/sqrt(u/10)
                    hist(y, prob=T, br=50, col="skyblue2")
                    curve(dt(x, 10), add=T, lwd=2)


                    enter image description here



                    Furthermore, you could check that the quantiles of $Y$ very nearly match the theoretical quantiles of $mathsfT(10).$



                    summary(y)
                    Min. 1st Qu. Median Mean 3rd Qu. Max.
                    -10.641101 -0.699409 0.000059 0.000221 0.701253 9.802922
                    qt(c(.25,.5,.75), 10)
                    [1] -0.6998121 0.0000000 0.6998121


                    The summary above also shows that $bar Y approx 0.$ And the sample variance of the simulated values of $Y$ is very nearly the variance $nu/(nu - 2) = 10/8 = 1.25$ of Student's t distribution with $nu = 10$ degrees of freedom.
                    [In effect, two of the moments suggested by #GeorgeDewhirts (+1).]



                    var(y); 10/8
                    [1] 1.250115
                    [1] 1.25


                    Also, you could do a Kolmogorov-Smirnov goodness-of-fit test on the first 5000 values of $Y$ and check that the P-value exceeds 5%. (The K-S test in R is limited to 5000 observations.) Roughly speaking, this is a formal, quantitative way to do @Henry's comparison of sorted observations.



                    ks.test(y[1:5000], pt, 10)

                    One-sample Kolmogorov-Smirnov test

                    data: y[1:5000]
                    D = 0.013661, p-value = 0.3083
                    alternative hypothesis: two-sided





                    share|cite|improve this answer











                    $endgroup$



                    I agree with @angryavian that you can't do a 'proof' in R.
                    Also, it is crucial to state that random variables $Z$
                    and $U$ are independent. Then $Y = fracZU/sqrt10 sim mathsfT(10)$ by definition.



                    Here is R code to simulate a million values of $T$ [as in the Answer of @Henry (+1)], then to compare their histogram with the density of $mathsfT(10).$ This
                    is a graphical demonstration that $T$ has (at least very nearly) the claimed t distribution.



                    set.seed(405) # for reproducibility
                    z = rnorm(10^6); u = rchisq(10^6, 10)
                    y = z/sqrt(u/10)
                    hist(y, prob=T, br=50, col="skyblue2")
                    curve(dt(x, 10), add=T, lwd=2)


                    enter image description here



                    Furthermore, you could check that the quantiles of $Y$ very nearly match the theoretical quantiles of $mathsfT(10).$



                    summary(y)
                    Min. 1st Qu. Median Mean 3rd Qu. Max.
                    -10.641101 -0.699409 0.000059 0.000221 0.701253 9.802922
                    qt(c(.25,.5,.75), 10)
                    [1] -0.6998121 0.0000000 0.6998121


                    The summary above also shows that $bar Y approx 0.$ And the sample variance of the simulated values of $Y$ is very nearly the variance $nu/(nu - 2) = 10/8 = 1.25$ of Student's t distribution with $nu = 10$ degrees of freedom.
                    [In effect, two of the moments suggested by #GeorgeDewhirts (+1).]



                    var(y); 10/8
                    [1] 1.250115
                    [1] 1.25


                    Also, you could do a Kolmogorov-Smirnov goodness-of-fit test on the first 5000 values of $Y$ and check that the P-value exceeds 5%. (The K-S test in R is limited to 5000 observations.) Roughly speaking, this is a formal, quantitative way to do @Henry's comparison of sorted observations.



                    ks.test(y[1:5000], pt, 10)

                    One-sample Kolmogorov-Smirnov test

                    data: y[1:5000]
                    D = 0.013661, p-value = 0.3083
                    alternative hypothesis: two-sided






                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Apr 5 at 19:17

























                    answered Apr 5 at 18:26









                    BruceETBruceET

                    36.3k71540




                    36.3k71540





















                        1












                        $begingroup$

                        You could compare the moments of your distribution with the theoretical moments of $T(10)$






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          You could compare the moments of your distribution with the theoretical moments of $T(10)$






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            You could compare the moments of your distribution with the theoretical moments of $T(10)$






                            share|cite|improve this answer









                            $endgroup$



                            You could compare the moments of your distribution with the theoretical moments of $T(10)$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 5 at 17:16









                            George DewhirstGeorge Dewhirst

                            7414




                            7414



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176151%2fhow-to-check-a-propriety-using-r-studio%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020