NMaximize is not converging to a solution The 2019 Stack Overflow Developer Survey Results Are InDeclaration of variables in large Linear Programming model with NMaximizeHow trustworthy is NMaximize?Numeric range: present or notMaximalBy[#, “votes”] & not equal to MaximalBy[“votes”]?Maximimize not working properly?Does fitting data get stuck by non-homogeneous interval of data?How to find maximum (not with numbers,but with parameters) of 2-variables function under constraints?Hot to single out numeric values from NMaximizeNSum: Summand (or its derivative) is not numerical at pointProblem with constraints of NMaximize
Is bread bad for ducks?
Can't find the latex code for the ⍎ (down tack jot) symbol
Carnot-Caratheodory metric
Is flight data recorder erased after every flight?
What is this 4-propeller plane?
Limit the amount of RAM Mathematica may access?
Why Did Howard Stark Use All The Vibranium They Had On A Prototype Shield?
Falsification in Math vs Science
What is the steepest angle that a canal can be traversable without locks?
The difference between dialogue marks
It's possible to achieve negative score?
Why could you hear an Amstrad CPC working?
Can distinct morphisms between curves induce the same morphism on singular cohomology?
Inflated grade on resume at previous job, might former employer tell new employer?
Is this food a bread or a loaf?
Where to refill my bottle in India?
How to create dashed lines/arrows in Illustrator
How to make payment on the internet without leaving a money trail?
What is a mixture ratio of propellant?
Should I use my personal or workplace e-mail when registering to external websites for work purpose?
Why isn't airport relocation done gradually?
How to deal with fear of taking dependencies
Dual Citizen. Exited the US on Italian passport recently
I see my dog run
NMaximize is not converging to a solution
The 2019 Stack Overflow Developer Survey Results Are InDeclaration of variables in large Linear Programming model with NMaximizeHow trustworthy is NMaximize?Numeric range: present or notMaximalBy[#, “votes”] & not equal to MaximalBy[“votes”]?Maximimize not working properly?Does fitting data get stuck by non-homogeneous interval of data?How to find maximum (not with numbers,but with parameters) of 2-variables function under constraints?Hot to single out numeric values from NMaximizeNSum: Summand (or its derivative) is not numerical at pointProblem with constraints of NMaximize
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[x, constraint, x, y, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
|
show 1 more comment
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[x, constraint, x, y, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
1
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57
|
show 1 more comment
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[x, constraint, x, y, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[x, constraint, x, y, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
functions maximum
asked Apr 5 at 17:27
gagansogaganso
1528
1528
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
1
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57
|
show 1 more comment
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
1
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
1
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results in y [Element] Integers && 7229.16 < y < 7344.29
and constraint /. x -> 19763
results in False
.$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results in y [Element] Integers && 7229.16 < y < 7344.29
and constraint /. x -> 19763
results in False
.$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
@JimB, I think for
x
, y
isn't needed. Thanks for pointing this out. But if I am trying to maximize y
, I need to maximize over both the variables since y
is an expression of x
, right?$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
@JimB, I think for
x
, y
isn't needed. Thanks for pointing this out. But if I am trying to maximize y
, I need to maximize over both the variables since y
is an expression of x
, right?$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
1
1
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[x, constraint2, x, y]
(* 19762, x -> 19762, y -> 7287 *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[y, constraint2, x, y]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, x, y];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ x, y),
Epilog -> Red,
AbsolutePointSize[3],
Point[x, y /. maxX[[2]]],
Point[x, y /. maxY[[2]]]]
$endgroup$
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[x, constraint2, x, y, Integers,
MaxIterations -> 10000]
19762., x -> 19762, y -> 7311
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
Apr 5 at 18:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194684%2fnmaximize-is-not-converging-to-a-solution%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[x, constraint2, x, y]
(* 19762, x -> 19762, y -> 7287 *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[y, constraint2, x, y]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, x, y];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ x, y),
Epilog -> Red,
AbsolutePointSize[3],
Point[x, y /. maxX[[2]]],
Point[x, y /. maxY[[2]]]]
$endgroup$
add a comment |
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[x, constraint2, x, y]
(* 19762, x -> 19762, y -> 7287 *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[y, constraint2, x, y]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, x, y];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ x, y),
Epilog -> Red,
AbsolutePointSize[3],
Point[x, y /. maxX[[2]]],
Point[x, y /. maxY[[2]]]]
$endgroup$
add a comment |
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[x, constraint2, x, y]
(* 19762, x -> 19762, y -> 7287 *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[y, constraint2, x, y]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, x, y];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ x, y),
Epilog -> Red,
AbsolutePointSize[3],
Point[x, y /. maxX[[2]]],
Point[x, y /. maxY[[2]]]]
$endgroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[x, constraint2, x, y]
(* 19762, x -> 19762, y -> 7287 *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[y, constraint2, x, y]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, x, y];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ x, y),
Epilog -> Red,
AbsolutePointSize[3],
Point[x, y /. maxX[[2]]],
Point[x, y /. maxY[[2]]]]
edited Apr 5 at 19:18
answered Apr 5 at 18:54
Bob HanlonBob Hanlon
61.4k33598
61.4k33598
add a comment |
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[x, constraint2, x, y, Integers,
MaxIterations -> 10000]
19762., x -> 19762, y -> 7311
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
Apr 5 at 18:12
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[x, constraint2, x, y, Integers,
MaxIterations -> 10000]
19762., x -> 19762, y -> 7311
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
Apr 5 at 18:12
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[x, constraint2, x, y, Integers,
MaxIterations -> 10000]
19762., x -> 19762, y -> 7311
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[x, constraint2, x, y, Integers,
MaxIterations -> 10000]
19762., x -> 19762, y -> 7311
And with your definition of constraint
:
constraint /. maxX[[2]]
True
edited Apr 5 at 18:02
answered Apr 5 at 17:53
Henrik SchumacherHenrik Schumacher
59.6k582166
59.6k582166
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
Apr 5 at 18:12
add a comment |
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
Apr 5 at 18:12
$begingroup$
But
constraint /. x -> 19762 /. y -> 8647
results in False
?$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
But
constraint /. x -> 19762 /. y -> 8647
results in False
?$endgroup$
– JimB
Apr 5 at 17:57
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
Apr 5 at 18:02
$begingroup$
@HenrikSchumacher, thank you for this. This works for
x
but when I try to find the maximum y
similarly, I still get the same message - NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.$endgroup$
– gaganso
Apr 5 at 18:12
$begingroup$
@HenrikSchumacher, thank you for this. This works for
x
but when I try to find the maximum y
similarly, I still get the same message - NMaximize[y, res, x, y, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.$endgroup$
– gaganso
Apr 5 at 18:12
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194684%2fnmaximize-is-not-converging-to-a-solution%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
Apr 5 at 17:44
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.$endgroup$
– JimB
Apr 5 at 17:51
$begingroup$
@JimB, I think for
x
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?$endgroup$
– gaganso
Apr 5 at 18:06
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
Apr 5 at 18:49
1
$begingroup$
OK. I was assuming that you were conditioning on the maximum value of $x$.
$endgroup$
– JimB
Apr 5 at 18:57