Codimension of non-flat locus The 2019 Stack Overflow Developer Survey Results Are InFlat locus of $S_1$-morphismProjectivity in flat familiesAre irreducible components of a flat family flat?When is the determinant of the push-forward of an ample line bundle ampleon flat morphismsflat and finite type morphismsWhen is the flatness locus non-emptyIs the zero locus of a global section flat?Do arithmetic schemes have non-singular alterations?Connected components in flat families

Codimension of non-flat locus



The 2019 Stack Overflow Developer Survey Results Are InFlat locus of $S_1$-morphismProjectivity in flat familiesAre irreducible components of a flat family flat?When is the determinant of the push-forward of an ample line bundle ampleon flat morphismsflat and finite type morphismsWhen is the flatness locus non-emptyIs the zero locus of a global section flat?Do arithmetic schemes have non-singular alterations?Connected components in flat families










3












$begingroup$


Let $X$, $Y$ be integral separated schemes of finite type over $mathbbC$, $Y$ be normal, $f:Xrightarrow Y$ be a surjective morphism of schemes. Can the non-flat locus of $f$ be non-empty and have codimension $geq 2$ in $X$?










share|cite|improve this question







New contributor




Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    Let $X$, $Y$ be integral separated schemes of finite type over $mathbbC$, $Y$ be normal, $f:Xrightarrow Y$ be a surjective morphism of schemes. Can the non-flat locus of $f$ be non-empty and have codimension $geq 2$ in $X$?










    share|cite|improve this question







    New contributor




    Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      Let $X$, $Y$ be integral separated schemes of finite type over $mathbbC$, $Y$ be normal, $f:Xrightarrow Y$ be a surjective morphism of schemes. Can the non-flat locus of $f$ be non-empty and have codimension $geq 2$ in $X$?










      share|cite|improve this question







      New contributor




      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Let $X$, $Y$ be integral separated schemes of finite type over $mathbbC$, $Y$ be normal, $f:Xrightarrow Y$ be a surjective morphism of schemes. Can the non-flat locus of $f$ be non-empty and have codimension $geq 2$ in $X$?







      ag.algebraic-geometry






      share|cite|improve this question







      New contributor




      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 5 at 15:44









      Stepan BanachStepan Banach

      1369




      1369




      New contributor




      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Stepan Banach is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          4 Answers
          4






          active

          oldest

          votes


















          5












          $begingroup$

          Let $Y$ be a cone over a smooth projective variety which is a product and projectively normal (so $Y$ is normal). For example let $Y$ be the cone over $mathbb P^1times mathbb P^1subseteq mathbb P^3$. In general, say $Y$ is a cone over $Vtimes W$.



          Next let $Hsubseteq W$ be an effective Cartier divisor (In the $mathbb P^1times mathbb P^1$ example, $H$ is simply a point) and let $H'=Vtimes H$. Finally, let
          $f:Xto Y$ be the blow up of $Y$ along its subscheme $Z$ which is the cone over $H'$. Then $f$ is an isomorphism (and hence flat) outside $Z$. Since $Z$ is a Weil divisor, which is Cartier except at the vertex, $f$ is a small morphism, so it is an isom outside a codimension $2$ subset.



          Addendum:
          Here is an example with $Y$ smooth. Start with the above example with $V=mathbb P^1$ and $W=mathbb P^n$ with $n>1$ and $Vtimes W$ embedded with the Segre embedding. Construct the same (and for the sake of avoiding confusion, let's denote it differently) $f_0:X_0to Y_0$ and let $vin Y_0$ denote the vertex of the cone. Then a relatively simple computation shows that then $f^-1(v)simeq V=mathbb P^1$ (for the actual computation see Prop 3.3 of this paper. Note that this means that the exceptional set of $f$ is $1$-dimensional. Another simple calculation shows that $X_0$ is smooth (this is where the choice of $V$, $W$ and the embedding matters).



          Now let $f:Xcolon =X_0times _Y_0X_0to Ycolon=X_0$. Then $f:Xto Y$ is birational (because of the dimensions there is only one component) and it's exceptional set (on $X$) is $2$-dimensional. From the construction and by the assumption that $n>1$ we obtain that $dim X=dim X_0= n+2>3$. Hence $f$ is an isomorphism (in particular, flat) outside a codimension $2$ subset of $X$ (but it is obviously not flat along the exceptional set).






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            what happens if $Y$ is smooth?
            $endgroup$
            – Stepan Banach
            Apr 5 at 18:03










          • $begingroup$
            @StepanBanach: I added an example where $Y$ is smooth
            $endgroup$
            – Sándor Kovács
            Apr 7 at 2:15










          • $begingroup$
            The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
            $endgroup$
            – Piotr Achinger
            Apr 7 at 3:00










          • $begingroup$
            @PiotrAchinger: I didn't claim that $X$ was smooth.
            $endgroup$
            – Sándor Kovács
            2 days ago







          • 1




            $begingroup$
            if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
            $endgroup$
            – Aknazar Kazhymurat
            2 days ago


















          5












          $begingroup$

          Let $n ge 2$, $X = mathbbA^n$, $Y = mathbbA^n/pm 1$ and $f colon X to Y$ the quotient morphism. The non-flat locus of $f$ is the point $f(0) in Y$.






          share|cite|improve this answer









          $endgroup$




















            4












            $begingroup$

            Yes. Let $Y$ be $mathrmSpec k[w,x,y,z]/(wz-xy)$. Let $X$ be $mathrmProj k[w,x,y,z, s,t]/(wz-xy, wt-xs, yt-zs)$ where $w$, $x$, $y$ and $z$ are in degree $0$ and $s$ and $t$ are in degree $1$. Then $Y$ is three dimensional with a singularity at $w=x=y=z=0$. The map $X to Y$ is a resolution of this singularity; it is an ismorphism (and hence flat) away from the singularity and the fiber over the singularity is $mathbbP^1$, so the nonflat locus is $1$-dimensional inside the $3$-fold $X$.



            This is a special case Sándor Kovács example, namely, it is what happens when you blow up the cone on $mathbbP^1 times (mathrmpoint)$ inside the cone on $mathbbP^1 times mathbbP^1$.






            share|cite|improve this answer











            $endgroup$




















              0












              $begingroup$

              Try $Y=mathrmSpec,mathbbC[x^4, x^3y, xy^3, y^4]$ and $X$ its normalization.






              share|cite|improve this answer









              $endgroup$








              • 3




                $begingroup$
                isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                $endgroup$
                – Stepan Banach
                Apr 5 at 17:21






              • 1




                $begingroup$
                @StepanBanach You did not mention normal in your question.
                $endgroup$
                – Mohan
                Apr 5 at 18:28











              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "504"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              Stepan Banach is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327249%2fcodimension-of-non-flat-locus%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              Let $Y$ be a cone over a smooth projective variety which is a product and projectively normal (so $Y$ is normal). For example let $Y$ be the cone over $mathbb P^1times mathbb P^1subseteq mathbb P^3$. In general, say $Y$ is a cone over $Vtimes W$.



              Next let $Hsubseteq W$ be an effective Cartier divisor (In the $mathbb P^1times mathbb P^1$ example, $H$ is simply a point) and let $H'=Vtimes H$. Finally, let
              $f:Xto Y$ be the blow up of $Y$ along its subscheme $Z$ which is the cone over $H'$. Then $f$ is an isomorphism (and hence flat) outside $Z$. Since $Z$ is a Weil divisor, which is Cartier except at the vertex, $f$ is a small morphism, so it is an isom outside a codimension $2$ subset.



              Addendum:
              Here is an example with $Y$ smooth. Start with the above example with $V=mathbb P^1$ and $W=mathbb P^n$ with $n>1$ and $Vtimes W$ embedded with the Segre embedding. Construct the same (and for the sake of avoiding confusion, let's denote it differently) $f_0:X_0to Y_0$ and let $vin Y_0$ denote the vertex of the cone. Then a relatively simple computation shows that then $f^-1(v)simeq V=mathbb P^1$ (for the actual computation see Prop 3.3 of this paper. Note that this means that the exceptional set of $f$ is $1$-dimensional. Another simple calculation shows that $X_0$ is smooth (this is where the choice of $V$, $W$ and the embedding matters).



              Now let $f:Xcolon =X_0times _Y_0X_0to Ycolon=X_0$. Then $f:Xto Y$ is birational (because of the dimensions there is only one component) and it's exceptional set (on $X$) is $2$-dimensional. From the construction and by the assumption that $n>1$ we obtain that $dim X=dim X_0= n+2>3$. Hence $f$ is an isomorphism (in particular, flat) outside a codimension $2$ subset of $X$ (but it is obviously not flat along the exceptional set).






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                what happens if $Y$ is smooth?
                $endgroup$
                – Stepan Banach
                Apr 5 at 18:03










              • $begingroup$
                @StepanBanach: I added an example where $Y$ is smooth
                $endgroup$
                – Sándor Kovács
                Apr 7 at 2:15










              • $begingroup$
                The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
                $endgroup$
                – Piotr Achinger
                Apr 7 at 3:00










              • $begingroup$
                @PiotrAchinger: I didn't claim that $X$ was smooth.
                $endgroup$
                – Sándor Kovács
                2 days ago







              • 1




                $begingroup$
                if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
                $endgroup$
                – Aknazar Kazhymurat
                2 days ago















              5












              $begingroup$

              Let $Y$ be a cone over a smooth projective variety which is a product and projectively normal (so $Y$ is normal). For example let $Y$ be the cone over $mathbb P^1times mathbb P^1subseteq mathbb P^3$. In general, say $Y$ is a cone over $Vtimes W$.



              Next let $Hsubseteq W$ be an effective Cartier divisor (In the $mathbb P^1times mathbb P^1$ example, $H$ is simply a point) and let $H'=Vtimes H$. Finally, let
              $f:Xto Y$ be the blow up of $Y$ along its subscheme $Z$ which is the cone over $H'$. Then $f$ is an isomorphism (and hence flat) outside $Z$. Since $Z$ is a Weil divisor, which is Cartier except at the vertex, $f$ is a small morphism, so it is an isom outside a codimension $2$ subset.



              Addendum:
              Here is an example with $Y$ smooth. Start with the above example with $V=mathbb P^1$ and $W=mathbb P^n$ with $n>1$ and $Vtimes W$ embedded with the Segre embedding. Construct the same (and for the sake of avoiding confusion, let's denote it differently) $f_0:X_0to Y_0$ and let $vin Y_0$ denote the vertex of the cone. Then a relatively simple computation shows that then $f^-1(v)simeq V=mathbb P^1$ (for the actual computation see Prop 3.3 of this paper. Note that this means that the exceptional set of $f$ is $1$-dimensional. Another simple calculation shows that $X_0$ is smooth (this is where the choice of $V$, $W$ and the embedding matters).



              Now let $f:Xcolon =X_0times _Y_0X_0to Ycolon=X_0$. Then $f:Xto Y$ is birational (because of the dimensions there is only one component) and it's exceptional set (on $X$) is $2$-dimensional. From the construction and by the assumption that $n>1$ we obtain that $dim X=dim X_0= n+2>3$. Hence $f$ is an isomorphism (in particular, flat) outside a codimension $2$ subset of $X$ (but it is obviously not flat along the exceptional set).






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                what happens if $Y$ is smooth?
                $endgroup$
                – Stepan Banach
                Apr 5 at 18:03










              • $begingroup$
                @StepanBanach: I added an example where $Y$ is smooth
                $endgroup$
                – Sándor Kovács
                Apr 7 at 2:15










              • $begingroup$
                The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
                $endgroup$
                – Piotr Achinger
                Apr 7 at 3:00










              • $begingroup$
                @PiotrAchinger: I didn't claim that $X$ was smooth.
                $endgroup$
                – Sándor Kovács
                2 days ago







              • 1




                $begingroup$
                if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
                $endgroup$
                – Aknazar Kazhymurat
                2 days ago













              5












              5








              5





              $begingroup$

              Let $Y$ be a cone over a smooth projective variety which is a product and projectively normal (so $Y$ is normal). For example let $Y$ be the cone over $mathbb P^1times mathbb P^1subseteq mathbb P^3$. In general, say $Y$ is a cone over $Vtimes W$.



              Next let $Hsubseteq W$ be an effective Cartier divisor (In the $mathbb P^1times mathbb P^1$ example, $H$ is simply a point) and let $H'=Vtimes H$. Finally, let
              $f:Xto Y$ be the blow up of $Y$ along its subscheme $Z$ which is the cone over $H'$. Then $f$ is an isomorphism (and hence flat) outside $Z$. Since $Z$ is a Weil divisor, which is Cartier except at the vertex, $f$ is a small morphism, so it is an isom outside a codimension $2$ subset.



              Addendum:
              Here is an example with $Y$ smooth. Start with the above example with $V=mathbb P^1$ and $W=mathbb P^n$ with $n>1$ and $Vtimes W$ embedded with the Segre embedding. Construct the same (and for the sake of avoiding confusion, let's denote it differently) $f_0:X_0to Y_0$ and let $vin Y_0$ denote the vertex of the cone. Then a relatively simple computation shows that then $f^-1(v)simeq V=mathbb P^1$ (for the actual computation see Prop 3.3 of this paper. Note that this means that the exceptional set of $f$ is $1$-dimensional. Another simple calculation shows that $X_0$ is smooth (this is where the choice of $V$, $W$ and the embedding matters).



              Now let $f:Xcolon =X_0times _Y_0X_0to Ycolon=X_0$. Then $f:Xto Y$ is birational (because of the dimensions there is only one component) and it's exceptional set (on $X$) is $2$-dimensional. From the construction and by the assumption that $n>1$ we obtain that $dim X=dim X_0= n+2>3$. Hence $f$ is an isomorphism (in particular, flat) outside a codimension $2$ subset of $X$ (but it is obviously not flat along the exceptional set).






              share|cite|improve this answer











              $endgroup$



              Let $Y$ be a cone over a smooth projective variety which is a product and projectively normal (so $Y$ is normal). For example let $Y$ be the cone over $mathbb P^1times mathbb P^1subseteq mathbb P^3$. In general, say $Y$ is a cone over $Vtimes W$.



              Next let $Hsubseteq W$ be an effective Cartier divisor (In the $mathbb P^1times mathbb P^1$ example, $H$ is simply a point) and let $H'=Vtimes H$. Finally, let
              $f:Xto Y$ be the blow up of $Y$ along its subscheme $Z$ which is the cone over $H'$. Then $f$ is an isomorphism (and hence flat) outside $Z$. Since $Z$ is a Weil divisor, which is Cartier except at the vertex, $f$ is a small morphism, so it is an isom outside a codimension $2$ subset.



              Addendum:
              Here is an example with $Y$ smooth. Start with the above example with $V=mathbb P^1$ and $W=mathbb P^n$ with $n>1$ and $Vtimes W$ embedded with the Segre embedding. Construct the same (and for the sake of avoiding confusion, let's denote it differently) $f_0:X_0to Y_0$ and let $vin Y_0$ denote the vertex of the cone. Then a relatively simple computation shows that then $f^-1(v)simeq V=mathbb P^1$ (for the actual computation see Prop 3.3 of this paper. Note that this means that the exceptional set of $f$ is $1$-dimensional. Another simple calculation shows that $X_0$ is smooth (this is where the choice of $V$, $W$ and the embedding matters).



              Now let $f:Xcolon =X_0times _Y_0X_0to Ycolon=X_0$. Then $f:Xto Y$ is birational (because of the dimensions there is only one component) and it's exceptional set (on $X$) is $2$-dimensional. From the construction and by the assumption that $n>1$ we obtain that $dim X=dim X_0= n+2>3$. Hence $f$ is an isomorphism (in particular, flat) outside a codimension $2$ subset of $X$ (but it is obviously not flat along the exceptional set).







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 2 days ago

























              answered Apr 5 at 17:59









              Sándor KovácsSándor Kovács

              36.9k284127




              36.9k284127











              • $begingroup$
                what happens if $Y$ is smooth?
                $endgroup$
                – Stepan Banach
                Apr 5 at 18:03










              • $begingroup$
                @StepanBanach: I added an example where $Y$ is smooth
                $endgroup$
                – Sándor Kovács
                Apr 7 at 2:15










              • $begingroup$
                The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
                $endgroup$
                – Piotr Achinger
                Apr 7 at 3:00










              • $begingroup$
                @PiotrAchinger: I didn't claim that $X$ was smooth.
                $endgroup$
                – Sándor Kovács
                2 days ago







              • 1




                $begingroup$
                if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
                $endgroup$
                – Aknazar Kazhymurat
                2 days ago
















              • $begingroup$
                what happens if $Y$ is smooth?
                $endgroup$
                – Stepan Banach
                Apr 5 at 18:03










              • $begingroup$
                @StepanBanach: I added an example where $Y$ is smooth
                $endgroup$
                – Sándor Kovács
                Apr 7 at 2:15










              • $begingroup$
                The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
                $endgroup$
                – Piotr Achinger
                Apr 7 at 3:00










              • $begingroup$
                @PiotrAchinger: I didn't claim that $X$ was smooth.
                $endgroup$
                – Sándor Kovács
                2 days ago







              • 1




                $begingroup$
                if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
                $endgroup$
                – Aknazar Kazhymurat
                2 days ago















              $begingroup$
              what happens if $Y$ is smooth?
              $endgroup$
              – Stepan Banach
              Apr 5 at 18:03




              $begingroup$
              what happens if $Y$ is smooth?
              $endgroup$
              – Stepan Banach
              Apr 5 at 18:03












              $begingroup$
              @StepanBanach: I added an example where $Y$ is smooth
              $endgroup$
              – Sándor Kovács
              Apr 7 at 2:15




              $begingroup$
              @StepanBanach: I added an example where $Y$ is smooth
              $endgroup$
              – Sándor Kovács
              Apr 7 at 2:15












              $begingroup$
              The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
              $endgroup$
              – Piotr Achinger
              Apr 7 at 3:00




              $begingroup$
              The second example ($X$ and $Y$ smooth, $f$ iso away from a curve in $X$) seems to contradict van den Waerden's theorem. What am I missing?
              $endgroup$
              – Piotr Achinger
              Apr 7 at 3:00












              $begingroup$
              @PiotrAchinger: I didn't claim that $X$ was smooth.
              $endgroup$
              – Sándor Kovács
              2 days ago





              $begingroup$
              @PiotrAchinger: I didn't claim that $X$ was smooth.
              $endgroup$
              – Sándor Kovács
              2 days ago





              1




              1




              $begingroup$
              if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
              $endgroup$
              – Aknazar Kazhymurat
              2 days ago




              $begingroup$
              if I understand correctly, for a surjective birational morphism between connected smooth schemes of finite type over $mathbbC$, the non-flat locus can not be non-empty of codimension $geq 2$. Is it true that the non-flat locus of a surjective morphism between connected smooth schemes of finite type over $mathbbC$ can not be non-empty of codimension $geq 2$?
              $endgroup$
              – Aknazar Kazhymurat
              2 days ago











              5












              $begingroup$

              Let $n ge 2$, $X = mathbbA^n$, $Y = mathbbA^n/pm 1$ and $f colon X to Y$ the quotient morphism. The non-flat locus of $f$ is the point $f(0) in Y$.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                Let $n ge 2$, $X = mathbbA^n$, $Y = mathbbA^n/pm 1$ and $f colon X to Y$ the quotient morphism. The non-flat locus of $f$ is the point $f(0) in Y$.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Let $n ge 2$, $X = mathbbA^n$, $Y = mathbbA^n/pm 1$ and $f colon X to Y$ the quotient morphism. The non-flat locus of $f$ is the point $f(0) in Y$.






                  share|cite|improve this answer









                  $endgroup$



                  Let $n ge 2$, $X = mathbbA^n$, $Y = mathbbA^n/pm 1$ and $f colon X to Y$ the quotient morphism. The non-flat locus of $f$ is the point $f(0) in Y$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 5 at 18:49









                  SashaSasha

                  21.3k22756




                  21.3k22756





















                      4












                      $begingroup$

                      Yes. Let $Y$ be $mathrmSpec k[w,x,y,z]/(wz-xy)$. Let $X$ be $mathrmProj k[w,x,y,z, s,t]/(wz-xy, wt-xs, yt-zs)$ where $w$, $x$, $y$ and $z$ are in degree $0$ and $s$ and $t$ are in degree $1$. Then $Y$ is three dimensional with a singularity at $w=x=y=z=0$. The map $X to Y$ is a resolution of this singularity; it is an ismorphism (and hence flat) away from the singularity and the fiber over the singularity is $mathbbP^1$, so the nonflat locus is $1$-dimensional inside the $3$-fold $X$.



                      This is a special case Sándor Kovács example, namely, it is what happens when you blow up the cone on $mathbbP^1 times (mathrmpoint)$ inside the cone on $mathbbP^1 times mathbbP^1$.






                      share|cite|improve this answer











                      $endgroup$

















                        4












                        $begingroup$

                        Yes. Let $Y$ be $mathrmSpec k[w,x,y,z]/(wz-xy)$. Let $X$ be $mathrmProj k[w,x,y,z, s,t]/(wz-xy, wt-xs, yt-zs)$ where $w$, $x$, $y$ and $z$ are in degree $0$ and $s$ and $t$ are in degree $1$. Then $Y$ is three dimensional with a singularity at $w=x=y=z=0$. The map $X to Y$ is a resolution of this singularity; it is an ismorphism (and hence flat) away from the singularity and the fiber over the singularity is $mathbbP^1$, so the nonflat locus is $1$-dimensional inside the $3$-fold $X$.



                        This is a special case Sándor Kovács example, namely, it is what happens when you blow up the cone on $mathbbP^1 times (mathrmpoint)$ inside the cone on $mathbbP^1 times mathbbP^1$.






                        share|cite|improve this answer











                        $endgroup$















                          4












                          4








                          4





                          $begingroup$

                          Yes. Let $Y$ be $mathrmSpec k[w,x,y,z]/(wz-xy)$. Let $X$ be $mathrmProj k[w,x,y,z, s,t]/(wz-xy, wt-xs, yt-zs)$ where $w$, $x$, $y$ and $z$ are in degree $0$ and $s$ and $t$ are in degree $1$. Then $Y$ is three dimensional with a singularity at $w=x=y=z=0$. The map $X to Y$ is a resolution of this singularity; it is an ismorphism (and hence flat) away from the singularity and the fiber over the singularity is $mathbbP^1$, so the nonflat locus is $1$-dimensional inside the $3$-fold $X$.



                          This is a special case Sándor Kovács example, namely, it is what happens when you blow up the cone on $mathbbP^1 times (mathrmpoint)$ inside the cone on $mathbbP^1 times mathbbP^1$.






                          share|cite|improve this answer











                          $endgroup$



                          Yes. Let $Y$ be $mathrmSpec k[w,x,y,z]/(wz-xy)$. Let $X$ be $mathrmProj k[w,x,y,z, s,t]/(wz-xy, wt-xs, yt-zs)$ where $w$, $x$, $y$ and $z$ are in degree $0$ and $s$ and $t$ are in degree $1$. Then $Y$ is three dimensional with a singularity at $w=x=y=z=0$. The map $X to Y$ is a resolution of this singularity; it is an ismorphism (and hence flat) away from the singularity and the fiber over the singularity is $mathbbP^1$, so the nonflat locus is $1$-dimensional inside the $3$-fold $X$.



                          This is a special case Sándor Kovács example, namely, it is what happens when you blow up the cone on $mathbbP^1 times (mathrmpoint)$ inside the cone on $mathbbP^1 times mathbbP^1$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Apr 5 at 18:02

























                          answered Apr 5 at 17:55









                          David E SpeyerDavid E Speyer

                          108k9282540




                          108k9282540





















                              0












                              $begingroup$

                              Try $Y=mathrmSpec,mathbbC[x^4, x^3y, xy^3, y^4]$ and $X$ its normalization.






                              share|cite|improve this answer









                              $endgroup$








                              • 3




                                $begingroup$
                                isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                                $endgroup$
                                – Stepan Banach
                                Apr 5 at 17:21






                              • 1




                                $begingroup$
                                @StepanBanach You did not mention normal in your question.
                                $endgroup$
                                – Mohan
                                Apr 5 at 18:28















                              0












                              $begingroup$

                              Try $Y=mathrmSpec,mathbbC[x^4, x^3y, xy^3, y^4]$ and $X$ its normalization.






                              share|cite|improve this answer









                              $endgroup$








                              • 3




                                $begingroup$
                                isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                                $endgroup$
                                – Stepan Banach
                                Apr 5 at 17:21






                              • 1




                                $begingroup$
                                @StepanBanach You did not mention normal in your question.
                                $endgroup$
                                – Mohan
                                Apr 5 at 18:28













                              0












                              0








                              0





                              $begingroup$

                              Try $Y=mathrmSpec,mathbbC[x^4, x^3y, xy^3, y^4]$ and $X$ its normalization.






                              share|cite|improve this answer









                              $endgroup$



                              Try $Y=mathrmSpec,mathbbC[x^4, x^3y, xy^3, y^4]$ and $X$ its normalization.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Apr 5 at 17:13









                              MohanMohan

                              3,46211312




                              3,46211312







                              • 3




                                $begingroup$
                                isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                                $endgroup$
                                – Stepan Banach
                                Apr 5 at 17:21






                              • 1




                                $begingroup$
                                @StepanBanach You did not mention normal in your question.
                                $endgroup$
                                – Mohan
                                Apr 5 at 18:28












                              • 3




                                $begingroup$
                                isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                                $endgroup$
                                – Stepan Banach
                                Apr 5 at 17:21






                              • 1




                                $begingroup$
                                @StepanBanach You did not mention normal in your question.
                                $endgroup$
                                – Mohan
                                Apr 5 at 18:28







                              3




                              3




                              $begingroup$
                              isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                              $endgroup$
                              – Stepan Banach
                              Apr 5 at 17:21




                              $begingroup$
                              isn't the normalization of a normal scheme the identity morphism (whose non-flat locus is empty)?
                              $endgroup$
                              – Stepan Banach
                              Apr 5 at 17:21




                              1




                              1




                              $begingroup$
                              @StepanBanach You did not mention normal in your question.
                              $endgroup$
                              – Mohan
                              Apr 5 at 18:28




                              $begingroup$
                              @StepanBanach You did not mention normal in your question.
                              $endgroup$
                              – Mohan
                              Apr 5 at 18:28










                              Stepan Banach is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              Stepan Banach is a new contributor. Be nice, and check out our Code of Conduct.












                              Stepan Banach is a new contributor. Be nice, and check out our Code of Conduct.











                              Stepan Banach is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to MathOverflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327249%2fcodimension-of-non-flat-locus%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020