Doubt in proof of Euclidean Algorithm Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Clarification on the proof for the Euclidean algorithmproblem with GCD/Euclidean algorithmExtended Euclidean Algorithm, what is our answer?Proving the number of iterations in the Euclidean algorithmEuclidean Algorithm (gcd)Diophantine equations using Euclidean algorithmProof of cardinality of fibres - why finiteness condition?Extended Euclidean Algorithm As Row OperationsEuclidean algorithm matrix proofEuclidean Algorithm Proof

How to assign captions for two tables in LaTeX?

"Seemed to had" is it correct?

Do I really need recursive chmod to restrict access to a folder?

Is 1 ppb equal to 1 μg/kg?

What LEGO pieces have "real-world" functionality?

3 doors, three guards, one stone

Examples of mediopassive verb constructions

What is the correct way to use the pinch test for dehydration?

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

I am not a queen, who am I?

What's the purpose of writing one's academic bio in 3rd person?

Did Kevin spill real chili?

How do I stop a creek from eroding my steep embankment?

What do you call a plan that's an alternative plan in case your initial plan fails?

Disable hyphenation for an entire paragraph

If Jon Snow became King of the Seven Kingdoms what would his regnal number be?

When is phishing education going too far?

List *all* the tuples!

How much radiation do nuclear physics experiments expose researchers to nowadays?

Should I call the interviewer directly, if HR aren't responding?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Why are there no cargo aircraft with "flying wing" design?

Single word antonym of "flightless"



Doubt in proof of Euclidean Algorithm



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Clarification on the proof for the Euclidean algorithmproblem with GCD/Euclidean algorithmExtended Euclidean Algorithm, what is our answer?Proving the number of iterations in the Euclidean algorithmEuclidean Algorithm (gcd)Diophantine equations using Euclidean algorithmProof of cardinality of fibres - why finiteness condition?Extended Euclidean Algorithm As Row OperationsEuclidean algorithm matrix proofEuclidean Algorithm Proof










2












$begingroup$


I got this text from https://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s5_2.pdf



enter image description here



Is it necessary for the proof to suppose:



"Now suppose $d$ is a common divisor of $b$ and $r$..."



By showing that if $d|a$ and $d|b$ then $d|(a-bq)$ aren't we already showing that the set of common dividers for $a$ and $b$ are the same $r$ and $b$?










share|cite|improve this question









$endgroup$











  • $begingroup$
    No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
    $endgroup$
    – Lord Shark the Unknown
    Apr 10 at 13:51










  • $begingroup$
    So ANY divisor of $a$ and $b$ is also a divisor or $r$?
    $endgroup$
    – João Pedro
    Apr 10 at 14:08















2












$begingroup$


I got this text from https://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s5_2.pdf



enter image description here



Is it necessary for the proof to suppose:



"Now suppose $d$ is a common divisor of $b$ and $r$..."



By showing that if $d|a$ and $d|b$ then $d|(a-bq)$ aren't we already showing that the set of common dividers for $a$ and $b$ are the same $r$ and $b$?










share|cite|improve this question









$endgroup$











  • $begingroup$
    No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
    $endgroup$
    – Lord Shark the Unknown
    Apr 10 at 13:51










  • $begingroup$
    So ANY divisor of $a$ and $b$ is also a divisor or $r$?
    $endgroup$
    – João Pedro
    Apr 10 at 14:08













2












2








2





$begingroup$


I got this text from https://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s5_2.pdf



enter image description here



Is it necessary for the proof to suppose:



"Now suppose $d$ is a common divisor of $b$ and $r$..."



By showing that if $d|a$ and $d|b$ then $d|(a-bq)$ aren't we already showing that the set of common dividers for $a$ and $b$ are the same $r$ and $b$?










share|cite|improve this question









$endgroup$




I got this text from https://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s5_2.pdf



enter image description here



Is it necessary for the proof to suppose:



"Now suppose $d$ is a common divisor of $b$ and $r$..."



By showing that if $d|a$ and $d|b$ then $d|(a-bq)$ aren't we already showing that the set of common dividers for $a$ and $b$ are the same $r$ and $b$?







proof-explanation euclidean-algorithm






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 10 at 13:46









João PedroJoão Pedro

354118




354118











  • $begingroup$
    No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
    $endgroup$
    – Lord Shark the Unknown
    Apr 10 at 13:51










  • $begingroup$
    So ANY divisor of $a$ and $b$ is also a divisor or $r$?
    $endgroup$
    – João Pedro
    Apr 10 at 14:08
















  • $begingroup$
    No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
    $endgroup$
    – Lord Shark the Unknown
    Apr 10 at 13:51










  • $begingroup$
    So ANY divisor of $a$ and $b$ is also a divisor or $r$?
    $endgroup$
    – João Pedro
    Apr 10 at 14:08















$begingroup$
No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
$endgroup$
– Lord Shark the Unknown
Apr 10 at 13:51




$begingroup$
No, you've shown that each common divisor of $a$, $b$ is a common divisor of $b$, $r$. You have not yet shown that each common divisor of $b$, $r$ is a common divisor of $a$, $b$.
$endgroup$
– Lord Shark the Unknown
Apr 10 at 13:51












$begingroup$
So ANY divisor of $a$ and $b$ is also a divisor or $r$?
$endgroup$
– João Pedro
Apr 10 at 14:08




$begingroup$
So ANY divisor of $a$ and $b$ is also a divisor or $r$?
$endgroup$
– João Pedro
Apr 10 at 14:08










3 Answers
3






active

oldest

votes


















3












$begingroup$

Yes. Let $,rm CD(x,y),$ be the set of Common Divisors of $x,y$. The proof works as follows.



Note $ rm CD(a,b) ,subseteq, rm CD(b,r) $ by paragraph $2$ in the proof,



and $ rm CD(a,b), supseteq, rm CD(b,r) $ by paragraph $3$ in the proof.



Thus $, rm CD(a,b), =, rm CD(b,r) $ so they have the same greatest element (= common divisor)



i.e. $ rm GCD(a,b)! =! rm GCD(b,r)$



Note that the proof requires both containment directions (paragraph $2$ and $3$) to deduce the equality of the common divisor sets (hence equality of their greatest elements).






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    No. By showing that if $dmid a$ and $dmid b$ then $dmid r$, we are showing that$$textcommon dividers of $a$ and $b$subsettextcommon dividers of $b$ and $r$.$$Now, we must prove that the reverse inclusion also holds.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Indeed, the proof shows that any common divisor of $a,b$ is a common divisor of $b,r$ and vice versa.



      Thus $a,b$ and $b,r$ have the same greatest common divisor, where greatest is taken according to the divisibility relation.






      share|cite|improve this answer









      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182379%2fdoubt-in-proof-of-euclidean-algorithm%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Yes. Let $,rm CD(x,y),$ be the set of Common Divisors of $x,y$. The proof works as follows.



        Note $ rm CD(a,b) ,subseteq, rm CD(b,r) $ by paragraph $2$ in the proof,



        and $ rm CD(a,b), supseteq, rm CD(b,r) $ by paragraph $3$ in the proof.



        Thus $, rm CD(a,b), =, rm CD(b,r) $ so they have the same greatest element (= common divisor)



        i.e. $ rm GCD(a,b)! =! rm GCD(b,r)$



        Note that the proof requires both containment directions (paragraph $2$ and $3$) to deduce the equality of the common divisor sets (hence equality of their greatest elements).






        share|cite|improve this answer











        $endgroup$

















          3












          $begingroup$

          Yes. Let $,rm CD(x,y),$ be the set of Common Divisors of $x,y$. The proof works as follows.



          Note $ rm CD(a,b) ,subseteq, rm CD(b,r) $ by paragraph $2$ in the proof,



          and $ rm CD(a,b), supseteq, rm CD(b,r) $ by paragraph $3$ in the proof.



          Thus $, rm CD(a,b), =, rm CD(b,r) $ so they have the same greatest element (= common divisor)



          i.e. $ rm GCD(a,b)! =! rm GCD(b,r)$



          Note that the proof requires both containment directions (paragraph $2$ and $3$) to deduce the equality of the common divisor sets (hence equality of their greatest elements).






          share|cite|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$

            Yes. Let $,rm CD(x,y),$ be the set of Common Divisors of $x,y$. The proof works as follows.



            Note $ rm CD(a,b) ,subseteq, rm CD(b,r) $ by paragraph $2$ in the proof,



            and $ rm CD(a,b), supseteq, rm CD(b,r) $ by paragraph $3$ in the proof.



            Thus $, rm CD(a,b), =, rm CD(b,r) $ so they have the same greatest element (= common divisor)



            i.e. $ rm GCD(a,b)! =! rm GCD(b,r)$



            Note that the proof requires both containment directions (paragraph $2$ and $3$) to deduce the equality of the common divisor sets (hence equality of their greatest elements).






            share|cite|improve this answer











            $endgroup$



            Yes. Let $,rm CD(x,y),$ be the set of Common Divisors of $x,y$. The proof works as follows.



            Note $ rm CD(a,b) ,subseteq, rm CD(b,r) $ by paragraph $2$ in the proof,



            and $ rm CD(a,b), supseteq, rm CD(b,r) $ by paragraph $3$ in the proof.



            Thus $, rm CD(a,b), =, rm CD(b,r) $ so they have the same greatest element (= common divisor)



            i.e. $ rm GCD(a,b)! =! rm GCD(b,r)$



            Note that the proof requires both containment directions (paragraph $2$ and $3$) to deduce the equality of the common divisor sets (hence equality of their greatest elements).







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 10 at 14:31

























            answered Apr 10 at 14:24









            Bill DubuqueBill Dubuque

            214k29197659




            214k29197659





















                4












                $begingroup$

                No. By showing that if $dmid a$ and $dmid b$ then $dmid r$, we are showing that$$textcommon dividers of $a$ and $b$subsettextcommon dividers of $b$ and $r$.$$Now, we must prove that the reverse inclusion also holds.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  No. By showing that if $dmid a$ and $dmid b$ then $dmid r$, we are showing that$$textcommon dividers of $a$ and $b$subsettextcommon dividers of $b$ and $r$.$$Now, we must prove that the reverse inclusion also holds.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    No. By showing that if $dmid a$ and $dmid b$ then $dmid r$, we are showing that$$textcommon dividers of $a$ and $b$subsettextcommon dividers of $b$ and $r$.$$Now, we must prove that the reverse inclusion also holds.






                    share|cite|improve this answer









                    $endgroup$



                    No. By showing that if $dmid a$ and $dmid b$ then $dmid r$, we are showing that$$textcommon dividers of $a$ and $b$subsettextcommon dividers of $b$ and $r$.$$Now, we must prove that the reverse inclusion also holds.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 10 at 13:49









                    José Carlos SantosJosé Carlos Santos

                    175k24134243




                    175k24134243





















                        0












                        $begingroup$

                        Indeed, the proof shows that any common divisor of $a,b$ is a common divisor of $b,r$ and vice versa.



                        Thus $a,b$ and $b,r$ have the same greatest common divisor, where greatest is taken according to the divisibility relation.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Indeed, the proof shows that any common divisor of $a,b$ is a common divisor of $b,r$ and vice versa.



                          Thus $a,b$ and $b,r$ have the same greatest common divisor, where greatest is taken according to the divisibility relation.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Indeed, the proof shows that any common divisor of $a,b$ is a common divisor of $b,r$ and vice versa.



                            Thus $a,b$ and $b,r$ have the same greatest common divisor, where greatest is taken according to the divisibility relation.






                            share|cite|improve this answer









                            $endgroup$



                            Indeed, the proof shows that any common divisor of $a,b$ is a common divisor of $b,r$ and vice versa.



                            Thus $a,b$ and $b,r$ have the same greatest common divisor, where greatest is taken according to the divisibility relation.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 10 at 13:54









                            WuestenfuxWuestenfux

                            5,5581513




                            5,5581513



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3182379%2fdoubt-in-proof-of-euclidean-algorithm%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020