Finding floor of reciprocal sumFind floor of sum $sum_k=1^80 k^-1/2$How should I handle the limit with the floor function?Is it possible to find sum of this series?Sum of a decreasing geometric series of integersIf $ A=frac12sqrt1+frac13sqrt2+frac14sqrt3+…+frac1100sqrt99;,$ Then $lfloor A rfloor =$floor sum of first $11$ terms of Harmonic SeriesWhat is the integer part of the sum of the reciprocals of the first $2017$ positive integers?On a series involving harmonic numbersSum of given telescopic seriesSum of series $sum^10_i=1ibigg(frac1^21+i+frac2^22+i+cdots cdots +frac10^210+ibigg)$Floor value of sum whose general term satisfy recursive relation.

Are modes in jazz primarily a melody thing?

Appropriate age to involve kids in life changing decisions

Why is the blank symbol not considered part of the input alphabet of a Turing machine?

Assuming a normal distribution: what is the sd for a given mean?

How do I minimise waste on a flight?

Can anyone identify this unknown 1988 PC card from The Palantir Corporation?

shebang or not shebang

Is it safe to keep the GPU on 100% utilization for a very long time?

Is there a reason why Turkey took the Balkan territories of the Ottoman Empire, instead of Greece or another of the Balkan states?

What is the Ancient One's mistake?

How to increase row height of a table and vertically "align middle"?

What is the meaning of "matter" in physics?

Convert Numbers To Emoji Math

Scaling rounded rectangles in Illustrator

Where do 5 or more U.S. counties meet in a single point?

The unknown and unexplained in science fiction

Do the Zhentarim fire members for killing fellow members?

Antivirus for Ubuntu 18.04

What chord could the notes 'F A♭ E♭' form?

How could a humanoid creature completely form within the span of 24 hours?

How to make a kid's bike easier to pedal

Gift for mentor after his thesis defense?

Extracting the parent, leaf, and extension from a valid path

Why were the rules for Proliferate changed?



Finding floor of reciprocal sum


Find floor of sum $sum_k=1^80 k^-1/2$How should I handle the limit with the floor function?Is it possible to find sum of this series?Sum of a decreasing geometric series of integersIf $ A=frac12sqrt1+frac13sqrt2+frac14sqrt3+…+frac1100sqrt99;,$ Then $lfloor A rfloor =$floor sum of first $11$ terms of Harmonic SeriesWhat is the integer part of the sum of the reciprocals of the first $2017$ positive integers?On a series involving harmonic numbersSum of given telescopic seriesSum of series $sum^10_i=1ibigg(frac1^21+i+frac2^22+i+cdots cdots +frac10^210+ibigg)$Floor value of sum whose general term satisfy recursive relation.













4












$begingroup$



Evaluation of



$$bigg lfloor frac1sqrt[3]1+frac1sqrt[3]2^2+frac1sqrt[3]3^2+cdots +frac1sqrt[3](1000)^2biggrfloor$$



Where $lfloor xrfloor $ is the floor of $x$




Try: It seems like we can solve it using Telescopic sums and that the sum lies between $2$ Telescopic sums, but could not figure out how to solve it.



Could someone help me to solve it? Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
    $endgroup$
    – clathratus
    Apr 28 at 18:25







  • 3




    $begingroup$
    I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
    $endgroup$
    – HAMIDINE SOUMARE
    Apr 28 at 18:26










  • $begingroup$
    In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
    $endgroup$
    – Stelios Sachpazis
    Apr 28 at 18:28











  • $begingroup$
    The answer is $27$. See here
    $endgroup$
    – clathratus
    Apr 28 at 18:30















4












$begingroup$



Evaluation of



$$bigg lfloor frac1sqrt[3]1+frac1sqrt[3]2^2+frac1sqrt[3]3^2+cdots +frac1sqrt[3](1000)^2biggrfloor$$



Where $lfloor xrfloor $ is the floor of $x$




Try: It seems like we can solve it using Telescopic sums and that the sum lies between $2$ Telescopic sums, but could not figure out how to solve it.



Could someone help me to solve it? Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
    $endgroup$
    – clathratus
    Apr 28 at 18:25







  • 3




    $begingroup$
    I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
    $endgroup$
    – HAMIDINE SOUMARE
    Apr 28 at 18:26










  • $begingroup$
    In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
    $endgroup$
    – Stelios Sachpazis
    Apr 28 at 18:28











  • $begingroup$
    The answer is $27$. See here
    $endgroup$
    – clathratus
    Apr 28 at 18:30













4












4








4


2



$begingroup$



Evaluation of



$$bigg lfloor frac1sqrt[3]1+frac1sqrt[3]2^2+frac1sqrt[3]3^2+cdots +frac1sqrt[3](1000)^2biggrfloor$$



Where $lfloor xrfloor $ is the floor of $x$




Try: It seems like we can solve it using Telescopic sums and that the sum lies between $2$ Telescopic sums, but could not figure out how to solve it.



Could someone help me to solve it? Thanks.










share|cite|improve this question











$endgroup$





Evaluation of



$$bigg lfloor frac1sqrt[3]1+frac1sqrt[3]2^2+frac1sqrt[3]3^2+cdots +frac1sqrt[3](1000)^2biggrfloor$$



Where $lfloor xrfloor $ is the floor of $x$




Try: It seems like we can solve it using Telescopic sums and that the sum lies between $2$ Telescopic sums, but could not figure out how to solve it.



Could someone help me to solve it? Thanks.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 28 at 18:46









Stelios Sachpazis

1,085416




1,085416










asked Apr 28 at 18:22









DXTDXT

6,0202733




6,0202733











  • $begingroup$
    Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
    $endgroup$
    – clathratus
    Apr 28 at 18:25







  • 3




    $begingroup$
    I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
    $endgroup$
    – HAMIDINE SOUMARE
    Apr 28 at 18:26










  • $begingroup$
    In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
    $endgroup$
    – Stelios Sachpazis
    Apr 28 at 18:28











  • $begingroup$
    The answer is $27$. See here
    $endgroup$
    – clathratus
    Apr 28 at 18:30
















  • $begingroup$
    Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
    $endgroup$
    – clathratus
    Apr 28 at 18:25







  • 3




    $begingroup$
    I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
    $endgroup$
    – HAMIDINE SOUMARE
    Apr 28 at 18:26










  • $begingroup$
    In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
    $endgroup$
    – Stelios Sachpazis
    Apr 28 at 18:28











  • $begingroup$
    The answer is $27$. See here
    $endgroup$
    – clathratus
    Apr 28 at 18:30















$begingroup$
Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
$endgroup$
– clathratus
Apr 28 at 18:25





$begingroup$
Note the definition of the Generalized Harmonic numbers: $$H_N^(s)=sum_n=1^Nfrac1n^s$$ Your value is $$lfloor H_1000^(2/3) rfloor$$
$endgroup$
– clathratus
Apr 28 at 18:25





3




3




$begingroup$
I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
$endgroup$
– HAMIDINE SOUMARE
Apr 28 at 18:26




$begingroup$
I don’t think there is something telescopic here. Comparing this sum with an integral, and bounding the error term might help.
$endgroup$
– HAMIDINE SOUMARE
Apr 28 at 18:26












$begingroup$
In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
$endgroup$
– Stelios Sachpazis
Apr 28 at 18:28





$begingroup$
In particular, you can check the answer of the user hypergeometric at math.stackexchange.com/questions/2570782/…. Follow his idea in your case. You can also work with Abel (partial) summation to estimate your sum.
$endgroup$
– Stelios Sachpazis
Apr 28 at 18:28













$begingroup$
The answer is $27$. See here
$endgroup$
– clathratus
Apr 28 at 18:30




$begingroup$
The answer is $27$. See here
$endgroup$
– clathratus
Apr 28 at 18:30










3 Answers
3






active

oldest

votes


















1












$begingroup$

Note that $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2<sum_k=1^1000frac1sqrt[3]k^2<1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2$.



$displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2=sum_k=1^1000frac3(sqrt[3]k+1-sqrt[3]k)(k+1)-k=3(sqrt[3]1001-1)>27$



$displaystyle 1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2=1+sum_k=2^1000frac3(sqrt[3]k-sqrt[3]k-1)(k-1)-k=1+3(sqrt[3]1000-1)=28$



So, $displaystyle leftlfloor sum_k=1^1000frac1sqrt[3]k^2rightrfloor=27$.






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    One approach is to approximate the sum with an integral, and show that the error is bounded by a number less than 1.



    In particular, let $$H_1000^(2/3) = sum_k=1^1000 k^-2/3, quad I = int_x=1^1000 x^-2/3 , dx.$$ Then we know $$I le H_1000^(2/3) < I+1.$$ But $I = 27$, and we are done.






    share|cite|improve this answer









    $endgroup$




















      4












      $begingroup$

      You can bound this summation by two integrals;
      $$int_1^1001 x^-2/3mathrmdxltsum_k=1^1000k^-2/3lt1+int_1^1000x^-2/3mathrmdx$$
      Hence we have
      $$27lt3sqrt[3]1001-3ltsum_k=1^1000k^-2/3lt28$$
      So as the value of the sum is strictly between $27$ and $28$, the floor of the sum is $27$.






      share|cite|improve this answer









      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205926%2ffinding-floor-of-reciprocal-sum%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Note that $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2<sum_k=1^1000frac1sqrt[3]k^2<1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2$.



        $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2=sum_k=1^1000frac3(sqrt[3]k+1-sqrt[3]k)(k+1)-k=3(sqrt[3]1001-1)>27$



        $displaystyle 1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2=1+sum_k=2^1000frac3(sqrt[3]k-sqrt[3]k-1)(k-1)-k=1+3(sqrt[3]1000-1)=28$



        So, $displaystyle leftlfloor sum_k=1^1000frac1sqrt[3]k^2rightrfloor=27$.






        share|cite|improve this answer











        $endgroup$

















          1












          $begingroup$

          Note that $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2<sum_k=1^1000frac1sqrt[3]k^2<1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2$.



          $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2=sum_k=1^1000frac3(sqrt[3]k+1-sqrt[3]k)(k+1)-k=3(sqrt[3]1001-1)>27$



          $displaystyle 1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2=1+sum_k=2^1000frac3(sqrt[3]k-sqrt[3]k-1)(k-1)-k=1+3(sqrt[3]1000-1)=28$



          So, $displaystyle leftlfloor sum_k=1^1000frac1sqrt[3]k^2rightrfloor=27$.






          share|cite|improve this answer











          $endgroup$















            1












            1








            1





            $begingroup$

            Note that $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2<sum_k=1^1000frac1sqrt[3]k^2<1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2$.



            $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2=sum_k=1^1000frac3(sqrt[3]k+1-sqrt[3]k)(k+1)-k=3(sqrt[3]1001-1)>27$



            $displaystyle 1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2=1+sum_k=2^1000frac3(sqrt[3]k-sqrt[3]k-1)(k-1)-k=1+3(sqrt[3]1000-1)=28$



            So, $displaystyle leftlfloor sum_k=1^1000frac1sqrt[3]k^2rightrfloor=27$.






            share|cite|improve this answer











            $endgroup$



            Note that $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2<sum_k=1^1000frac1sqrt[3]k^2<1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2$.



            $displaystyle sum_k=1^1000frac3sqrt[3](k+1)^2+sqrt[3]k(k+1)+sqrt[3]k^2=sum_k=1^1000frac3(sqrt[3]k+1-sqrt[3]k)(k+1)-k=3(sqrt[3]1001-1)>27$



            $displaystyle 1+sum_k=2^1000frac3sqrt[3](k-1)^2+sqrt[3]k(k-1)+sqrt[3]k^2=1+sum_k=2^1000frac3(sqrt[3]k-sqrt[3]k-1)(k-1)-k=1+3(sqrt[3]1000-1)=28$



            So, $displaystyle leftlfloor sum_k=1^1000frac1sqrt[3]k^2rightrfloor=27$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 29 at 3:47

























            answered Apr 29 at 3:36









            CY AriesCY Aries

            17.8k11743




            17.8k11743





















                4












                $begingroup$

                One approach is to approximate the sum with an integral, and show that the error is bounded by a number less than 1.



                In particular, let $$H_1000^(2/3) = sum_k=1^1000 k^-2/3, quad I = int_x=1^1000 x^-2/3 , dx.$$ Then we know $$I le H_1000^(2/3) < I+1.$$ But $I = 27$, and we are done.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  One approach is to approximate the sum with an integral, and show that the error is bounded by a number less than 1.



                  In particular, let $$H_1000^(2/3) = sum_k=1^1000 k^-2/3, quad I = int_x=1^1000 x^-2/3 , dx.$$ Then we know $$I le H_1000^(2/3) < I+1.$$ But $I = 27$, and we are done.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    One approach is to approximate the sum with an integral, and show that the error is bounded by a number less than 1.



                    In particular, let $$H_1000^(2/3) = sum_k=1^1000 k^-2/3, quad I = int_x=1^1000 x^-2/3 , dx.$$ Then we know $$I le H_1000^(2/3) < I+1.$$ But $I = 27$, and we are done.






                    share|cite|improve this answer









                    $endgroup$



                    One approach is to approximate the sum with an integral, and show that the error is bounded by a number less than 1.



                    In particular, let $$H_1000^(2/3) = sum_k=1^1000 k^-2/3, quad I = int_x=1^1000 x^-2/3 , dx.$$ Then we know $$I le H_1000^(2/3) < I+1.$$ But $I = 27$, and we are done.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 28 at 18:40









                    heropupheropup

                    66.2k866104




                    66.2k866104





















                        4












                        $begingroup$

                        You can bound this summation by two integrals;
                        $$int_1^1001 x^-2/3mathrmdxltsum_k=1^1000k^-2/3lt1+int_1^1000x^-2/3mathrmdx$$
                        Hence we have
                        $$27lt3sqrt[3]1001-3ltsum_k=1^1000k^-2/3lt28$$
                        So as the value of the sum is strictly between $27$ and $28$, the floor of the sum is $27$.






                        share|cite|improve this answer









                        $endgroup$

















                          4












                          $begingroup$

                          You can bound this summation by two integrals;
                          $$int_1^1001 x^-2/3mathrmdxltsum_k=1^1000k^-2/3lt1+int_1^1000x^-2/3mathrmdx$$
                          Hence we have
                          $$27lt3sqrt[3]1001-3ltsum_k=1^1000k^-2/3lt28$$
                          So as the value of the sum is strictly between $27$ and $28$, the floor of the sum is $27$.






                          share|cite|improve this answer









                          $endgroup$















                            4












                            4








                            4





                            $begingroup$

                            You can bound this summation by two integrals;
                            $$int_1^1001 x^-2/3mathrmdxltsum_k=1^1000k^-2/3lt1+int_1^1000x^-2/3mathrmdx$$
                            Hence we have
                            $$27lt3sqrt[3]1001-3ltsum_k=1^1000k^-2/3lt28$$
                            So as the value of the sum is strictly between $27$ and $28$, the floor of the sum is $27$.






                            share|cite|improve this answer









                            $endgroup$



                            You can bound this summation by two integrals;
                            $$int_1^1001 x^-2/3mathrmdxltsum_k=1^1000k^-2/3lt1+int_1^1000x^-2/3mathrmdx$$
                            Hence we have
                            $$27lt3sqrt[3]1001-3ltsum_k=1^1000k^-2/3lt28$$
                            So as the value of the sum is strictly between $27$ and $28$, the floor of the sum is $27$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 28 at 18:41









                            Peter ForemanPeter Foreman

                            9,5241321




                            9,5241321



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205926%2ffinding-floor-of-reciprocal-sum%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020