Can we show a sum of symmetrical cosine values is zero by using roots of unity?Proving complex series $1 + costheta + cos2theta +… + cos ntheta $Zero sum of roots of unity decompositionMinimising a sum of roots of unityAlternating sum of roots of unity $sum_k=0^n-1(-1)^komega^k$A sum of powers of primitive roots of unityCan any triangle be generated using linear transformations of cubic roots of unity?sum of (some) $p$-th roots of unity, $p$ primeSolving $z^5=-16+16sqrt3i$ using the fifth roots of unityProving that $sum cos p theta = 0$ where $theta$ is argument of the primitive roots of unityUsing the fifth root of unity to show the cosine equationSum of nth roots of unity equal to Sqrt[n]

Prime Sieve and brute force

What is the actual quality of machine translations?

Should I avoid hard-packed crusher dust trails with my hybrid?

Why was the Sega Genesis marketed as a 16-bit console?

Can tefillin be "switched"?

Recommended tools for graphs and charts

Winning Strategy for the Magician and his Apprentice

What is the highest possible temporary AC at level 1, without any help from others?

What to do when surprise and a high initiative roll conflict with the narrative?

Why would future John risk sending back a T-800 to save his younger self?

Generate a Graeco-Latin square

What language is software running on the ISS written in?

Where Mongol herds graze

Arriving at the same result with the opposite hypotheses

How to deal with apathetic co-worker?

Is open-sourcing the code of a webapp not recommended?

Stellaris Sectors

C++ Arduino IDE receiving garbled `char` from function

How do governments keep track of their issued currency?

How to return a security deposit to a tenant

SHELL environment variable still points to zsh after using bash

Why didn't Voldemort recognize that Dumbledore was affected by his curse?

This riddle is not to see but to solve

Is it legal for a bar bouncer to conficaste a fake ID



Can we show a sum of symmetrical cosine values is zero by using roots of unity?


Proving complex series $1 + costheta + cos2theta +… + cos ntheta $Zero sum of roots of unity decompositionMinimising a sum of roots of unityAlternating sum of roots of unity $sum_k=0^n-1(-1)^komega^k$A sum of powers of primitive roots of unityCan any triangle be generated using linear transformations of cubic roots of unity?sum of (some) $p$-th roots of unity, $p$ primeSolving $z^5=-16+16sqrt3i$ using the fifth roots of unityProving that $sum cos p theta = 0$ where $theta$ is argument of the primitive roots of unityUsing the fifth root of unity to show the cosine equationSum of nth roots of unity equal to Sqrt[n]













5












$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39















5












$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39













5












5








5





$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$




Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 21 at 21:30









Chase Ryan Taylor

4,53621531




4,53621531










asked May 21 at 21:01









JustWanderingJustWandering

1619




1619











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39
















  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39















$begingroup$
Use complex numbers, something like this
$endgroup$
– rtybase
May 21 at 21:05





$begingroup$
Use complex numbers, something like this
$endgroup$
– rtybase
May 21 at 21:05





4




4




$begingroup$
You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
$endgroup$
– Mark Bennet
May 21 at 21:10





$begingroup$
You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
$endgroup$
– Mark Bennet
May 21 at 21:10













$begingroup$
Also, it works for all $n$'s, not just odd ones.
$endgroup$
– rtybase
May 21 at 21:19




$begingroup$
Also, it works for all $n$'s, not just odd ones.
$endgroup$
– rtybase
May 21 at 21:19












$begingroup$
because the unpaired one is $cos (pi /2)$
$endgroup$
– G Cab
May 21 at 21:41




$begingroup$
because the unpaired one is $cos (pi /2)$
$endgroup$
– G Cab
May 21 at 21:41




1




1




$begingroup$
@Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
$endgroup$
– Lord Shark the Unknown
May 22 at 5:39




$begingroup$
@Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
$endgroup$
– Lord Shark the Unknown
May 22 at 5:39










3 Answers
3






active

oldest

votes


















11












$begingroup$

Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



$$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



The same goes for other natural numbers $n$ instead of $7$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41


















5












$begingroup$

I think you can use Euler's Formula.



The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



There sum from k to $N-1$ is a geometric series.



$S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



The numerator is zero for any N.



But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16


















2












$begingroup$

Pointing at the link I left in the comments




$$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




Then for $forall ninmathbbN, n>0$
$$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3234931%2fcan-we-show-a-sum-of-symmetrical-cosine-values-is-zero-by-using-roots-of-unity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41















    11












    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41













    11












    11








    11





    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$



    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited May 22 at 3:22

























    answered May 21 at 21:16









    Mohammad Riazi-KermaniMohammad Riazi-Kermani

    44.7k42163




    44.7k42163







    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41












    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41







    1




    1




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41











    5












    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16















    5












    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16













    5












    5








    5





    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$



    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered May 21 at 21:24









    TurlocTheRedTurlocTheRed

    1,216412




    1,216412











    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16
















    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16















    $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16




    $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16











    2












    $begingroup$

    Pointing at the link I left in the comments




    $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




    Then for $forall ninmathbbN, n>0$
    $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
    fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
    fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Pointing at the link I left in the comments




      $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




      Then for $forall ninmathbbN, n>0$
      $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
      fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
      fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Pointing at the link I left in the comments




        $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




        Then for $forall ninmathbbN, n>0$
        $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
        fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
        fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






        share|cite|improve this answer









        $endgroup$



        Pointing at the link I left in the comments




        $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




        Then for $forall ninmathbbN, n>0$
        $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
        fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
        fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 21 at 21:29









        rtybasertybase

        12.2k31634




        12.2k31634



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3234931%2fcan-we-show-a-sum-of-symmetrical-cosine-values-is-zero-by-using-roots-of-unity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

            Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

            What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company