Can we show a sum of symmetrical cosine values is zero by using roots of unity?Proving complex series $1 + costheta + cos2theta +… + cos ntheta $Zero sum of roots of unity decompositionMinimising a sum of roots of unityAlternating sum of roots of unity $sum_k=0^n-1(-1)^komega^k$A sum of powers of primitive roots of unityCan any triangle be generated using linear transformations of cubic roots of unity?sum of (some) $p$-th roots of unity, $p$ primeSolving $z^5=-16+16sqrt3i$ using the fifth roots of unityProving that $sum cos p theta = 0$ where $theta$ is argument of the primitive roots of unityUsing the fifth root of unity to show the cosine equationSum of nth roots of unity equal to Sqrt[n]

Prime Sieve and brute force

What is the actual quality of machine translations?

Should I avoid hard-packed crusher dust trails with my hybrid?

Why was the Sega Genesis marketed as a 16-bit console?

Can tefillin be "switched"?

Recommended tools for graphs and charts

Winning Strategy for the Magician and his Apprentice

What is the highest possible temporary AC at level 1, without any help from others?

What to do when surprise and a high initiative roll conflict with the narrative?

Why would future John risk sending back a T-800 to save his younger self?

Generate a Graeco-Latin square

What language is software running on the ISS written in?

Where Mongol herds graze

Arriving at the same result with the opposite hypotheses

How to deal with apathetic co-worker?

Is open-sourcing the code of a webapp not recommended?

Stellaris Sectors

C++ Arduino IDE receiving garbled `char` from function

How do governments keep track of their issued currency?

How to return a security deposit to a tenant

SHELL environment variable still points to zsh after using bash

Why didn't Voldemort recognize that Dumbledore was affected by his curse?

This riddle is not to see but to solve

Is it legal for a bar bouncer to conficaste a fake ID



Can we show a sum of symmetrical cosine values is zero by using roots of unity?


Proving complex series $1 + costheta + cos2theta +… + cos ntheta $Zero sum of roots of unity decompositionMinimising a sum of roots of unityAlternating sum of roots of unity $sum_k=0^n-1(-1)^komega^k$A sum of powers of primitive roots of unityCan any triangle be generated using linear transformations of cubic roots of unity?sum of (some) $p$-th roots of unity, $p$ primeSolving $z^5=-16+16sqrt3i$ using the fifth roots of unityProving that $sum cos p theta = 0$ where $theta$ is argument of the primitive roots of unityUsing the fifth root of unity to show the cosine equationSum of nth roots of unity equal to Sqrt[n]













5












$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39















5












$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39













5












5








5





$begingroup$


Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?










share|cite|improve this question











$endgroup$




Can we show that



$$cosfracpi7+cosfrac2pi7+cosfrac3pi7+cosfrac4pi7+cosfrac5pi7+cosfrac6pi7=0$$



by considering the seventh roots of unity? If so how could we do it?



Also I have observed that



$$cosfracpi5+cosfrac2pi5+cosfrac3pi5+cosfrac4pi5=0$$



as well, so just out of curiosity, is it true that $$sum_k=1^n-1 cosfrackpin = 0$$



for all $n$ odd?







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 21 at 21:30









Chase Ryan Taylor

4,53621531




4,53621531










asked May 21 at 21:01









JustWanderingJustWandering

1619




1619











  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39
















  • $begingroup$
    Use complex numbers, something like this
    $endgroup$
    – rtybase
    May 21 at 21:05







  • 4




    $begingroup$
    You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
    $endgroup$
    – Mark Bennet
    May 21 at 21:10











  • $begingroup$
    Also, it works for all $n$'s, not just odd ones.
    $endgroup$
    – rtybase
    May 21 at 21:19










  • $begingroup$
    because the unpaired one is $cos (pi /2)$
    $endgroup$
    – G Cab
    May 21 at 21:41






  • 1




    $begingroup$
    @Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
    $endgroup$
    – Lord Shark the Unknown
    May 22 at 5:39















$begingroup$
Use complex numbers, something like this
$endgroup$
– rtybase
May 21 at 21:05





$begingroup$
Use complex numbers, something like this
$endgroup$
– rtybase
May 21 at 21:05





4




4




$begingroup$
You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
$endgroup$
– Mark Bennet
May 21 at 21:10





$begingroup$
You could use that $cos (pi-theta)=-cos theta$ instead, and just pair each cosine with its negative.
$endgroup$
– Mark Bennet
May 21 at 21:10













$begingroup$
Also, it works for all $n$'s, not just odd ones.
$endgroup$
– rtybase
May 21 at 21:19




$begingroup$
Also, it works for all $n$'s, not just odd ones.
$endgroup$
– rtybase
May 21 at 21:19












$begingroup$
because the unpaired one is $cos (pi /2)$
$endgroup$
– G Cab
May 21 at 21:41




$begingroup$
because the unpaired one is $cos (pi /2)$
$endgroup$
– G Cab
May 21 at 21:41




1




1




$begingroup$
@Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
$endgroup$
– Lord Shark the Unknown
May 22 at 5:39




$begingroup$
@Acccumulation Even for $n=1$, one has $sum_k=1^n-1cos(kpi/n)=0$.
$endgroup$
– Lord Shark the Unknown
May 22 at 5:39










3 Answers
3






active

oldest

votes


















11












$begingroup$

Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



$$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



The same goes for other natural numbers $n$ instead of $7$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41


















5












$begingroup$

I think you can use Euler's Formula.



The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



There sum from k to $N-1$ is a geometric series.



$S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



The numerator is zero for any N.



But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16


















2












$begingroup$

Pointing at the link I left in the comments




$$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




Then for $forall ninmathbbN, n>0$
$$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3234931%2fcan-we-show-a-sum-of-symmetrical-cosine-values-is-zero-by-using-roots-of-unity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41















    11












    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41













    11












    11








    11





    $begingroup$

    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.






    share|cite|improve this answer











    $endgroup$



    Note that $$cos(pi - alpha)= - cos(alpha)$$ Therefore $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)+cos(frac4pi7)+cos(frac5pi7)+cos(frac6pi7)=$$



    $$cos(fracpi7)+cos(frac2pi7)+cos(frac3pi7)-cos(frac3pi7)-cos(frac2pi7)-cos(fracpi7)=0$$



    The same goes for other natural numbers $n$ instead of $7$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited May 22 at 3:22

























    answered May 21 at 21:16









    Mohammad Riazi-KermaniMohammad Riazi-Kermani

    44.7k42163




    44.7k42163







    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41












    • 1




      $begingroup$
      and even number also
      $endgroup$
      – G Cab
      May 21 at 21:41







    1




    1




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41




    $begingroup$
    and even number also
    $endgroup$
    – G Cab
    May 21 at 21:41











    5












    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16















    5












    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16













    5












    5








    5





    $begingroup$

    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.






    share|cite|improve this answer









    $endgroup$



    I think you can use Euler's Formula.



    The Nth roots of unity = $e^2pi k i/N$ for values of k between $0$ and $N-1$ inclusive.



    There sum from k to $N-1$ is a geometric series.



    $S= sum_k=0^N-1 e^2pi i k/N=frac1cdot e^(2pi i /N)N-1e^2pi i /N-1$



    The numerator is zero for any N.



    But the real part of $S$ is the real part of the individual terms of the sum, i.e. the cosines. The real part of the sum is zero so the sum of the real parts of the roots of unity is 0.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered May 21 at 21:24









    TurlocTheRedTurlocTheRed

    1,216412




    1,216412











    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16
















    • $begingroup$
      <pedant>This works only for integer N greater than 1</pedant>
      $endgroup$
      – Acccumulation
      May 22 at 5:16















    $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16




    $begingroup$
    <pedant>This works only for integer N greater than 1</pedant>
    $endgroup$
    – Acccumulation
    May 22 at 5:16











    2












    $begingroup$

    Pointing at the link I left in the comments




    $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




    Then for $forall ninmathbbN, n>0$
    $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
    fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
    fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Pointing at the link I left in the comments




      $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




      Then for $forall ninmathbbN, n>0$
      $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
      fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
      fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Pointing at the link I left in the comments




        $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




        Then for $forall ninmathbbN, n>0$
        $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
        fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
        fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$






        share|cite|improve this answer









        $endgroup$



        Pointing at the link I left in the comments




        $$1 + costheta + cos2theta +... + cos ntheta = frac12 + fracsin[(n+frac12)theta]2sin(fractheta2)$$




        Then for $forall ninmathbbN, n>0$
        $$cosfracpin+1+ cosfrac2pin+1 +... + cos fracnpin+1 = fracsinleft[(n+frac12)fracpin+1right]2sinleft(fracpi2(n+1)right)-frac12=\
        fracsinleft[frac2n+12(n+1)piright]2sinleft(fracpi2(n+1)right)-frac12=
        fracsinleft[pi-fracpi2(n+1)right]2sinleft(fracpi2(n+1)right)-frac12=frac12-frac12=0$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 21 at 21:29









        rtybasertybase

        12.2k31634




        12.2k31634



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3234931%2fcan-we-show-a-sum-of-symmetrical-cosine-values-is-zero-by-using-roots-of-unity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

            Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

            Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020