Finding the maximum real part of rootsPlot the maximum of the real parts of the eigenvalues of a trancendental equationPlot cubic root which includes the negative graphFindRoot gives a wrong solution which obviously should not be thereEvaluating the real part of an expressionStability analysis of transcendental equation (stability crossing curves)A question about ContourPlotFinding Real Roots and Determining RangeThe function is real, while its integral is complexFinding the real solutions using the ones from a complexificationHow to separate the real part from the imaginary part?Finding the real part of a complicated complex expression

Does Lawful Interception of 4G / the proposed 5G provide a back door for hackers as well?

Could one theoretically use the expansion of the universe to travel through it? At least in one direction?

Would an 8% reduction in drag outweigh the weight addition from this custom CFD-tested winglet?

Looking for a simple way to manipulate one column of a matrix

International Code of Ethics for order of co-authors in research papers

Is Simic Ascendancy triggered by Awakening of Vitu-Ghazi?

How did Thanos not realise this had happened at the end of Endgame?

Two researchers want to work on the same extension to my paper. Who to help?

How could we transfer large amounts of energy sourced in space to Earth?

Why use steam instead of just hot air?

Was the Highlands Ranch shooting the 115th mass shooting in the US in 2019

Is there enough time to Planar Bind a creature conjured by a 1-hour-duration spell?

How do I compare the result of "1d20+x, with advantage" to "1d20+y, without advantage", assuming x < y?

Does anyone Remember or have a ROM dump for a Cartridge for the ATARIST

On what legal basis did the UK remove the 'European Union' from its passport?

Best species to breed to intelligence

Cropping a message using array splits

Ex-manager wants to stay in touch, I don't want to

How does Howard Stark know this?

Pre-1993 comic in which Wolverine's claws were turned to rubber?

How to make the table in the figure in LaTeX?

As programers say: Strive to be lazy

Ubuntu won't let me edit or delete .vimrc file

The lexical root of the perfect tense forms differs from the lexical root of the infinitive form



Finding the maximum real part of roots


Plot the maximum of the real parts of the eigenvalues of a trancendental equationPlot cubic root which includes the negative graphFindRoot gives a wrong solution which obviously should not be thereEvaluating the real part of an expressionStability analysis of transcendental equation (stability crossing curves)A question about ContourPlotFinding Real Roots and Determining RangeThe function is real, while its integral is complexFinding the real solutions using the ones from a complexificationHow to separate the real part from the imaginary part?Finding the real part of a complicated complex expression













3












$begingroup$


Suppose that I have this problem



roots = 
Reduce[
Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet;

ListPlot[Re[z], Im[z] /. ToRules[roots],
PlotLabel ->
Style[TraditionalForm[Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]]], 14],
PlotStyle -> Red, AspectRatio -> 1]


Thus as in https://www.wolfram.com/mathematica/newin7/content/TranscendentalRoots/PlotTheRootsOfANestedTranscendentalEquation.html

I get a beautiful solution. Suppose now that this equation depends on quantity a in a range of (1, 2).



roots[a_] := 
Reduce[
Sin[z + Sin[z + Sin[z]]] == a + a Cos[z + a Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet; `


But I don't want the real and imaginary part for each vale of a specified a, rather I would like to have a plot that is a continuous function of a, and the maximum of the real part of the z.



Is there any way to do it?



I have tried this,



Plot[Max[Re[z]] /. ToRules[roots[a_]], a, 1, 2, 
PlotLabel -> PlotStyle -> Red, AspectRatio -> 1]


but it has been running for a day and I still have not got any result.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
    $endgroup$
    – Kagaratsch
    May 1 at 16:14















3












$begingroup$


Suppose that I have this problem



roots = 
Reduce[
Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet;

ListPlot[Re[z], Im[z] /. ToRules[roots],
PlotLabel ->
Style[TraditionalForm[Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]]], 14],
PlotStyle -> Red, AspectRatio -> 1]


Thus as in https://www.wolfram.com/mathematica/newin7/content/TranscendentalRoots/PlotTheRootsOfANestedTranscendentalEquation.html

I get a beautiful solution. Suppose now that this equation depends on quantity a in a range of (1, 2).



roots[a_] := 
Reduce[
Sin[z + Sin[z + Sin[z]]] == a + a Cos[z + a Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet; `


But I don't want the real and imaginary part for each vale of a specified a, rather I would like to have a plot that is a continuous function of a, and the maximum of the real part of the z.



Is there any way to do it?



I have tried this,



Plot[Max[Re[z]] /. ToRules[roots[a_]], a, 1, 2, 
PlotLabel -> PlotStyle -> Red, AspectRatio -> 1]


but it has been running for a day and I still have not got any result.










share|improve this question











$endgroup$







  • 1




    $begingroup$
    Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
    $endgroup$
    – Kagaratsch
    May 1 at 16:14













3












3








3


0



$begingroup$


Suppose that I have this problem



roots = 
Reduce[
Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet;

ListPlot[Re[z], Im[z] /. ToRules[roots],
PlotLabel ->
Style[TraditionalForm[Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]]], 14],
PlotStyle -> Red, AspectRatio -> 1]


Thus as in https://www.wolfram.com/mathematica/newin7/content/TranscendentalRoots/PlotTheRootsOfANestedTranscendentalEquation.html

I get a beautiful solution. Suppose now that this equation depends on quantity a in a range of (1, 2).



roots[a_] := 
Reduce[
Sin[z + Sin[z + Sin[z]]] == a + a Cos[z + a Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet; `


But I don't want the real and imaginary part for each vale of a specified a, rather I would like to have a plot that is a continuous function of a, and the maximum of the real part of the z.



Is there any way to do it?



I have tried this,



Plot[Max[Re[z]] /. ToRules[roots[a_]], a, 1, 2, 
PlotLabel -> PlotStyle -> Red, AspectRatio -> 1]


but it has been running for a day and I still have not got any result.










share|improve this question











$endgroup$




Suppose that I have this problem



roots = 
Reduce[
Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet;

ListPlot[Re[z], Im[z] /. ToRules[roots],
PlotLabel ->
Style[TraditionalForm[Sin[z + Sin[z + Sin[z]]] == Cos[z + Cos[z + Cos[z]]]], 14],
PlotStyle -> Red, AspectRatio -> 1]


Thus as in https://www.wolfram.com/mathematica/newin7/content/TranscendentalRoots/PlotTheRootsOfANestedTranscendentalEquation.html

I get a beautiful solution. Suppose now that this equation depends on quantity a in a range of (1, 2).



roots[a_] := 
Reduce[
Sin[z + Sin[z + Sin[z]]] == a + a Cos[z + a Cos[z + Cos[z]]] &&
-3 < Re[z] < 3 && -3 < Im[z] < 3, z] // Quiet; `


But I don't want the real and imaginary part for each vale of a specified a, rather I would like to have a plot that is a continuous function of a, and the maximum of the real part of the z.



Is there any way to do it?



I have tried this,



Plot[Max[Re[z]] /. ToRules[roots[a_]], a, 1, 2, 
PlotLabel -> PlotStyle -> Red, AspectRatio -> 1]


but it has been running for a day and I still have not got any result.







plotting equation-solving complex






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 1 at 16:41









m_goldberg

89.9k873203




89.9k873203










asked May 1 at 14:31









vanessavanessa

204




204







  • 1




    $begingroup$
    Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
    $endgroup$
    – Kagaratsch
    May 1 at 16:14












  • 1




    $begingroup$
    Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
    $endgroup$
    – Kagaratsch
    May 1 at 16:14







1




1




$begingroup$
Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
$endgroup$
– Kagaratsch
May 1 at 16:14




$begingroup$
Try discretizing the a value in the relevant range. If you assume the result to be smooth, you'll get a good approximation.
$endgroup$
– Kagaratsch
May 1 at 16:14










1 Answer
1






active

oldest

votes


















6












$begingroup$

Clear["Global`*"]


Use a numeric technique, i.e., NSolve.



f[a_?NumericQ] := 
Max@Re[z /.
NSolve[Sin[z + Sin[z + Sin[z]]] ==
a + Cos[z + a*Cos[z + a*Cos[z]]] && -3 < Re[z] < 3 &&
-3 < Im[z] < 3 && 1 <= a <= 2, z]]


Since f uses a numeric technique, its argument is restricted to numeric values by using PatternTest with NumericQ. Even using numeric techniques the calculations are slow.



AbsoluteTiming[data = Table[a, f[a], a, 1, 2, .025];]

(* 803.729, Null *)

ListLinePlot[data,
Frame -> True,
FrameLabel ->
(Style[#, 12, Bold] & /@ "a", "Max[Re[z]]")]


enter image description here



The plot is not smooth so if you were to use Plot its adaptive sampling would further increase the time required.






share|improve this answer









$endgroup$












  • $begingroup$
    It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
    $endgroup$
    – vanessa
    May 1 at 17:57











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197442%2ffinding-the-maximum-real-part-of-roots%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Clear["Global`*"]


Use a numeric technique, i.e., NSolve.



f[a_?NumericQ] := 
Max@Re[z /.
NSolve[Sin[z + Sin[z + Sin[z]]] ==
a + Cos[z + a*Cos[z + a*Cos[z]]] && -3 < Re[z] < 3 &&
-3 < Im[z] < 3 && 1 <= a <= 2, z]]


Since f uses a numeric technique, its argument is restricted to numeric values by using PatternTest with NumericQ. Even using numeric techniques the calculations are slow.



AbsoluteTiming[data = Table[a, f[a], a, 1, 2, .025];]

(* 803.729, Null *)

ListLinePlot[data,
Frame -> True,
FrameLabel ->
(Style[#, 12, Bold] & /@ "a", "Max[Re[z]]")]


enter image description here



The plot is not smooth so if you were to use Plot its adaptive sampling would further increase the time required.






share|improve this answer









$endgroup$












  • $begingroup$
    It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
    $endgroup$
    – vanessa
    May 1 at 17:57















6












$begingroup$

Clear["Global`*"]


Use a numeric technique, i.e., NSolve.



f[a_?NumericQ] := 
Max@Re[z /.
NSolve[Sin[z + Sin[z + Sin[z]]] ==
a + Cos[z + a*Cos[z + a*Cos[z]]] && -3 < Re[z] < 3 &&
-3 < Im[z] < 3 && 1 <= a <= 2, z]]


Since f uses a numeric technique, its argument is restricted to numeric values by using PatternTest with NumericQ. Even using numeric techniques the calculations are slow.



AbsoluteTiming[data = Table[a, f[a], a, 1, 2, .025];]

(* 803.729, Null *)

ListLinePlot[data,
Frame -> True,
FrameLabel ->
(Style[#, 12, Bold] & /@ "a", "Max[Re[z]]")]


enter image description here



The plot is not smooth so if you were to use Plot its adaptive sampling would further increase the time required.






share|improve this answer









$endgroup$












  • $begingroup$
    It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
    $endgroup$
    – vanessa
    May 1 at 17:57













6












6








6





$begingroup$

Clear["Global`*"]


Use a numeric technique, i.e., NSolve.



f[a_?NumericQ] := 
Max@Re[z /.
NSolve[Sin[z + Sin[z + Sin[z]]] ==
a + Cos[z + a*Cos[z + a*Cos[z]]] && -3 < Re[z] < 3 &&
-3 < Im[z] < 3 && 1 <= a <= 2, z]]


Since f uses a numeric technique, its argument is restricted to numeric values by using PatternTest with NumericQ. Even using numeric techniques the calculations are slow.



AbsoluteTiming[data = Table[a, f[a], a, 1, 2, .025];]

(* 803.729, Null *)

ListLinePlot[data,
Frame -> True,
FrameLabel ->
(Style[#, 12, Bold] & /@ "a", "Max[Re[z]]")]


enter image description here



The plot is not smooth so if you were to use Plot its adaptive sampling would further increase the time required.






share|improve this answer









$endgroup$



Clear["Global`*"]


Use a numeric technique, i.e., NSolve.



f[a_?NumericQ] := 
Max@Re[z /.
NSolve[Sin[z + Sin[z + Sin[z]]] ==
a + Cos[z + a*Cos[z + a*Cos[z]]] && -3 < Re[z] < 3 &&
-3 < Im[z] < 3 && 1 <= a <= 2, z]]


Since f uses a numeric technique, its argument is restricted to numeric values by using PatternTest with NumericQ. Even using numeric techniques the calculations are slow.



AbsoluteTiming[data = Table[a, f[a], a, 1, 2, .025];]

(* 803.729, Null *)

ListLinePlot[data,
Frame -> True,
FrameLabel ->
(Style[#, 12, Bold] & /@ "a", "Max[Re[z]]")]


enter image description here



The plot is not smooth so if you were to use Plot its adaptive sampling would further increase the time required.







share|improve this answer












share|improve this answer



share|improve this answer










answered May 1 at 16:16









Bob HanlonBob Hanlon

62.4k33598




62.4k33598











  • $begingroup$
    It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
    $endgroup$
    – vanessa
    May 1 at 17:57
















  • $begingroup$
    It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
    $endgroup$
    – vanessa
    May 1 at 17:57















$begingroup$
It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
$endgroup$
– vanessa
May 1 at 17:57




$begingroup$
It took longer for me (2673.97 seconds), but it work! Thank you so much for your clever answer!
$endgroup$
– vanessa
May 1 at 17:57

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197442%2ffinding-the-maximum-real-part-of-roots%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020