Find limit in use of integralshow to find the limit?Find limit $lim_x rightarrow 0 , fracarctan(3x)tanbig((x+3pi)/3big)$ without using L'Hospital's rulemathematical analysisLimit of a complex sequenceUsing the mean value theorem calculate this limit : $lim_x rightarrow 0 fracarctan(x^2+x-1)+fracpi4x^2+3x$Limit of a definite integral with parameter (2)Limit of $(intlimits_0^n (1+arctan^2x ),dx )^ frac1n$limit of and integral depending on nA tricky limit involving exponential integralsFind limit supremum from 3 sequence theorem
Is there a set of positive integers of density 1 which contains no infinite arithmetic progression?
Should I refuse to be named as co-author of a low quality paper?
Did Apple bundle a specific monitor with the Apple II+ for schools?
Does the new finding on "reversing a quantum jump mid-flight" rule out any interpretations of QM?
Why does this query, missing a FROM clause, not error out?
Write a function that checks if a string starts with or contains something
Is the use of umgeben in the passive unusual?
Increase speed altering column on large table to NON NULL
Does putting salt first make it easier for attacker to bruteforce the hash?
How to publish items after pipeline is finished?
Separate SPI data
Electricity free spaceship
Who won a Game of Bar Dice?
Java Servlet & JSP simple login
How can one's career as a reviewer be ended?
Proving that a Russian cryptographic standard is too structured
How can I remove material from this wood beam?
Please figure out this Pan digital Prince
How to avoid typing 'git' at the begining of every Git command
Do people with slow metabolism tend to gain weight (fat) if they stop exercising?
60s or 70s novel about Empire of Man making 1st contact with 1st discovered alien race
If I leave the US through an airport, do I have to return through the same airport?
Analogy between an unknown in an argument, and a contradiction in the principle of explosion
Why is Na5 not played in this line of the French Defense, Advance Variation?
Find limit in use of integrals
how to find the limit?Find limit $lim_x rightarrow 0 , fracarctan(3x)tanbig((x+3pi)/3big)$ without using L'Hospital's rulemathematical analysisLimit of a complex sequenceUsing the mean value theorem calculate this limit : $lim_x rightarrow 0 fracarctan(x^2+x-1)+fracpi4x^2+3x$Limit of a definite integral with parameter (2)Limit of $(intlimits_0^n (1+arctan^2x ),dx )^ frac1n$limit of and integral depending on nA tricky limit involving exponential integralsFind limit supremum from 3 sequence theorem
$begingroup$
Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $
From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$
$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$
so this bounding doesn't help me. Has somebody better idea how to bound that?
integration limits
$endgroup$
add a comment |
$begingroup$
Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $
From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$
$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$
so this bounding doesn't help me. Has somebody better idea how to bound that?
integration limits
$endgroup$
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45
add a comment |
$begingroup$
Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $
From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$
$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$
so this bounding doesn't help me. Has somebody better idea how to bound that?
integration limits
$endgroup$
Find limit $lim_n rightarrow infty int_-1^1 x^5 cdot arctan(nx) dx $
From mean-value-theorem we have
$$ frac12 c^5 cdot arctan(nc) mbox for some c in (-1,1) $$
$$ underbracefrac12 cdot arctan(-n)_rightarrow - pi /4 le frac12 c^5 cdot arctan(nc) le underbracefrac12 cdot arctan(n)_rightarrow pi /4 $$
so this bounding doesn't help me. Has somebody better idea how to bound that?
integration limits
integration limits
asked May 25 at 15:41
Trebacz112Trebacz112
675
675
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45
add a comment |
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$
$endgroup$
add a comment |
$begingroup$
Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
$$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
n^3-15 n45 n^6$$
$endgroup$
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3239397%2ffind-limit-in-use-of-integrals%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$
$endgroup$
add a comment |
$begingroup$
We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$
$endgroup$
add a comment |
$begingroup$
We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$
$endgroup$
We'll simplify with $y=nx$. Integration by parts gives $$int y^5arctan ydy=fracy^66arctan y-frac16intfracy^61+y^2dy\=fracy^66arctan y-frac16intleft(y^4-y^2+1-frac11+y^2right)dy\=fracy^6+16arctan y-frac130y^5+frac118y^3-frac16 y+C.$$Hence $$frac1n^6int_-n^n y^5arctan ydy=fracfracn^63arctan n+o(n^6)n^6stackrelntoinftytofrac13arctaninfty=fracpi6.$$But it seems such a shame to compute the antiderivative's irrelevant polynomial terms. So for an alternative strategy, let's write the problem as $2lim_ntoinftyint_0^1 x^5arctan nxdx$ (since the integrand is even), which by dominated convergence is $$piint_0^1 x^5dx=fracpi6.$$
edited May 25 at 15:55
answered May 25 at 15:50
J.G.J.G.
39.6k23758
39.6k23758
add a comment |
add a comment |
$begingroup$
Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
$$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
n^3-15 n45 n^6$$
$endgroup$
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
add a comment |
$begingroup$
Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
$$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
n^3-15 n45 n^6$$
$endgroup$
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
add a comment |
$begingroup$
Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
$$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
n^3-15 n45 n^6$$
$endgroup$
Hint: For the integral $$int_-1^1x^5arctan(nx)dx$$ we get
$$frac15 left(n^6+1right) tan ^-1(n)-3 n^5+5
n^3-15 n45 n^6$$
answered May 25 at 15:45
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
82.3k42867
82.3k42867
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
add a comment |
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
When I am doing integration I stuck there $int x^6/(n^2cdot x^2 +1)$
$endgroup$
– Trebacz112
May 25 at 15:46
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
$begingroup$
Partial fractions, @Trebacz112
$endgroup$
– Clayton
May 25 at 15:47
1
1
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
$begingroup$
Hint: $$fracx^6n^2x^2+1=frac x^4n^2-frac x^2n^4+n^-6-frac 1n^6 left( n^2x^2+1 right) $$
$endgroup$
– Dr. Sonnhard Graubner
May 25 at 15:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3239397%2ffind-limit-in-use-of-integrals%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is there a reason to not just do the integration?
$endgroup$
– Clayton
May 25 at 15:45