A pair of spaces equivalent to a pair of CW-complexesSimply connected simplicial complexesQuotients of Cantor cubes onto spaces Standard model structures on $Top$Different model structures on TopIs $partial Gammahookrightarrow Gamma$ a Serre cofibration?Homeomorphism type of pair of faces in a regular CW complexpair of injective morphisms of simplicial groupsRestriction of a cofibration to closed subspacesClosed embedding of CW-complexes

Multi tool use
Multi tool use

A pair of spaces equivalent to a pair of CW-complexes


Simply connected simplicial complexesQuotients of Cantor cubes onto spaces Standard model structures on $Top$Different model structures on TopIs $partial Gammahookrightarrow Gamma$ a Serre cofibration?Homeomorphism type of pair of faces in a regular CW complexpair of injective morphisms of simplicial groupsRestriction of a cofibration to closed subspacesClosed embedding of CW-complexes













3












$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56















3












$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56













3












3








3





$begingroup$


Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?










share|cite|improve this question











$endgroup$




Suppose that $X$ is a CW-complex and $Y$ a CW-subcomplex of $X$. Let $A$ be a closed subspace of $Z$ such that




  1. $Z-A$ is homeomorhic to $X-Y$ and


  2. $Z/A$ homeomorphic to $X/Y$ and

  3. The closure of $Z-A$ in $Z$ is $Z$ it self.

Does it follow that the embedding $Arightarrow Z$
is a cofibration ?







reference-request at.algebraic-topology gn.general-topology cw-complexes






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 28 at 14:47







cellular

















asked May 28 at 14:24









cellularcellular

835




835











  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56
















  • $begingroup$
    You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
    $endgroup$
    – Tom Goodwillie
    May 28 at 17:37










  • $begingroup$
    @TomGoodwillie Yes, exactly.
    $endgroup$
    – cellular
    May 28 at 17:56















$begingroup$
You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
$endgroup$
– Tom Goodwillie
May 28 at 17:37




$begingroup$
You should clarify what you mean by "cofibration". The term has different meanings in different contexts. I am guessing you mean Quillen's model theory on Top, so a map that has the same left lifting properties as the inclusions $S^n-1to D^n$,
$endgroup$
– Tom Goodwillie
May 28 at 17:37












$begingroup$
@TomGoodwillie Yes, exactly.
$endgroup$
– cellular
May 28 at 17:56




$begingroup$
@TomGoodwillie Yes, exactly.
$endgroup$
– cellular
May 28 at 17:56










1 Answer
1






active

oldest

votes


















5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332687%2fa-pair-of-spaces-equivalent-to-a-pair-of-cw-complexes%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26















5












$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26













5












5








5





$begingroup$

If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.






share|cite|improve this answer









$endgroup$



If you mean cofibration in the sense of Quillen, then no. You can get a counterexample in which $Z-A$ is a $1$-cell.



Take $(X,Y)=(D^1,S^0)$. I will choose a compact space $Z$ with a dense open subset $Ucong D^1-S^0$. Then, writing $A=Z-U$, we get $Z/A$ is homeomorphic to $X/Y$, as they are both the one-point compactification of $D^1-S^0$.



$U$ will be a spiral in the open unit disk in the plane whose limit point set is the entire boundary circle. To be specific, map the unit complex disk to itself by $$re^ithetamapsto re^i(theta+frac11-r)$$Take the real open interval with endpoints $pm 1$ and hit it with this map.



Now if $Z$ is the closure of $U$ so that $A=Z-U$ is the unit circle in the plane then I claim $Ato Z$ is not a cofibration. I believe this follows from the fact that $A$ is one of the path-components of $Z$. Suppose for contradiction that $(Z,A)$ is a retract of a cellular pair $(W,B)$. Let $Vsubset W$ be the union of all the path-components of $W$ having nonempty intersection with $B$. This is open and closed. Its preimage in $Z$ (under the coretraction $i:Zto W$) is open and closed and contains $A$, so it is all of $Z$. But then a point $pin U$ yields a point $i(p)in V$ that can be joined by a path in $W$ to a point in $B$. Applying the retraction, we find that $p$ can be joined by a path in $Z$ to a point in $A$, contradiction.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered May 28 at 17:59









Tom GoodwillieTom Goodwillie

40.9k3112202




40.9k3112202











  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26
















  • $begingroup$
    More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
    $endgroup$
    – Tom Goodwillie
    May 28 at 21:26















$begingroup$
More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
$endgroup$
– Tom Goodwillie
May 28 at 21:26




$begingroup$
More simply, $Ato Z$ is not a cofibration because here is a trivial fibration for which a section defined on $A$ does not extend to $Z$: the "identity" map from the disjoint union of $A$ and $U$ to $Z$.
$endgroup$
– Tom Goodwillie
May 28 at 21:26

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f332687%2fa-pair-of-spaces-equivalent-to-a-pair-of-cw-complexes%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







duRHwX D
QM2hTj,Dv N utLSlYZP1,BWTwxw xTbxxkx jlfWdAFe1Y,JzAu4wg0k 50V6jEhL4zsUggzt8qQcK4Xv6

Popular posts from this blog

Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020