How can I get exact maximal value of this expression?Finding maximum value with position from Table of valuesHow do I find the position of the maximum value in each column of a table?Finding the associated parameter of the maximumHow to maximize the modulus of a multivariate complex-valued function?Finding maximum in the boundary limits using mathematicaNSum: Summand (or its derivative) is not numerical at pointHow to do Maximum Likelihood Estimation with this Multivariate Normal?NMaximize is not converging to a solutionUnable to find maximum value of my custom functionParametric Find Maximum

Why do radiation hardened IC packages often have long leads?

How do you play "tenth" chords on the guitar?

Difference between prepositions in "...killed during/in the war"

I've been given a project I can't complete, what should I do?

Is there a DSLR/mirorless camera with minimal options like a classic, simple SLR?

Does the new finding on "reversing a quantum jump mid-flight" rule out any interpretations of QM?

How can I write the maximally mixed state on m qubits as a linear combination of basis vectors

Do empty drive bays need to be filled?

Why did the World Bank set the global poverty line at $1.90?

To what extent do precedents in Westminster systems apply in other countries that use it?

If there's something that implicates the president why is there then a national security issue? (John Dowd)

As easy as Three, Two, One... How fast can you go from Five to Four?

Housemarks (superimposed & combined letters, heraldry)

So a part of my house disappeared... But not because of a chunk resetting

Suppose leased car is totalled: what are financial implications?

Converting from CMYK to RGB (to work with it), then back to CMYK

Rail-to-rail op-amp only reaches 90% of VCC, works sometimes, not everytime

Make Gimbap cutter

Why is the length of the Kelvin unit of temperature equal to that of the Celsius unit?

Why is Na5 not played in this line of the French Defense, Advance Variation?

How can one's career as a reviewer be ended?

bash vs. zsh: What are the practical differences?

What is the logic behind charging tax _in the form of money_ for owning property when the property does not produce money?

Should I put programming books I wrote a few years ago on my resume?



How can I get exact maximal value of this expression?


Finding maximum value with position from Table of valuesHow do I find the position of the maximum value in each column of a table?Finding the associated parameter of the maximumHow to maximize the modulus of a multivariate complex-valued function?Finding maximum in the boundary limits using mathematicaNSum: Summand (or its derivative) is not numerical at pointHow to do Maximum Likelihood Estimation with this Multivariate Normal?NMaximize is not converging to a solutionUnable to find maximum value of my custom functionParametric Find Maximum













3












$begingroup$


I am trying to find the exact maximum value of the expression
$$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



I know that, the answer is $ 4sqrt3 + sqrt6 .$
When I tried



NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


I got the approximate answer



9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


When I tried,



Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










share|improve this question











$endgroup$
















    3












    $begingroup$


    I am trying to find the exact maximum value of the expression
    $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



    I know that, the answer is $ 4sqrt3 + sqrt6 .$
    When I tried



    NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
    Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
    Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
    a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


    I got the approximate answer



    9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


    When I tried,



    Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
    Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
    Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
    a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


    It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to find the exact maximum value of the expression
      $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



      I know that, the answer is $ 4sqrt3 + sqrt6 .$
      When I tried



      NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      I got the approximate answer



      9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


      When I tried,



      Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










      share|improve this question











      $endgroup$




      I am trying to find the exact maximum value of the expression
      $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



      I know that, the answer is $ 4sqrt3 + sqrt6 .$
      When I tried



      NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      I got the approximate answer



      9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


      When I tried,



      Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?







      maximum






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited May 27 at 4:08







      minhthien_2016

















      asked May 26 at 12:58









      minhthien_2016minhthien_2016

      600311




      600311




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Writing:



          rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
          rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
          rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
          str = "PossibleClosedForm", 1, "FormulaData";

          fct = rad1 + rad2 + rad3;
          bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
          sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

          max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
          a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
          b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
          c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

          sol2 = max, a -> a0, b -> b0, c -> c0
          sol1 == N[sol2]


          I get:




          4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



          True




          which is what is desired.






          share|improve this answer











          $endgroup$




















            7












            $begingroup$

            I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



            constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
            constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
            constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
            constraint4 = a^2 + b^2 + c^2 - 1;


            Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



            obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


            Setting the derivatives with respect to each of the unknowns to 0:



            eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


            Let's solve them:



            sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



            1.77698, Null




            Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



            r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



            a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
            e -> Sqrt[6],
            f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
            2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
            1/2 (-4 Sqrt[3] - Sqrt[6])




            So, the maximum value is:



            d + e + f /. First [r]



            4 Sqrt[3] + Sqrt[6]







            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199132%2fhow-can-i-get-exact-maximal-value-of-this-expression%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              Writing:



              rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
              rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
              rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
              str = "PossibleClosedForm", 1, "FormulaData";

              fct = rad1 + rad2 + rad3;
              bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
              sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

              max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
              a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
              b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
              c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

              sol2 = max, a -> a0, b -> b0, c -> c0
              sol1 == N[sol2]


              I get:




              4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



              True




              which is what is desired.






              share|improve this answer











              $endgroup$

















                7












                $begingroup$

                Writing:



                rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                str = "PossibleClosedForm", 1, "FormulaData";

                fct = rad1 + rad2 + rad3;
                bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                sol2 = max, a -> a0, b -> b0, c -> c0
                sol1 == N[sol2]


                I get:




                4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                True




                which is what is desired.






                share|improve this answer











                $endgroup$















                  7












                  7








                  7





                  $begingroup$

                  Writing:



                  rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                  rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                  rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                  str = "PossibleClosedForm", 1, "FormulaData";

                  fct = rad1 + rad2 + rad3;
                  bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                  sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                  max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                  a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                  b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                  c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                  sol2 = max, a -> a0, b -> b0, c -> c0
                  sol1 == N[sol2]


                  I get:




                  4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                  True




                  which is what is desired.






                  share|improve this answer











                  $endgroup$



                  Writing:



                  rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                  rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                  rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                  str = "PossibleClosedForm", 1, "FormulaData";

                  fct = rad1 + rad2 + rad3;
                  bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                  sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                  max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                  a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                  b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                  c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                  sol2 = max, a -> a0, b -> b0, c -> c0
                  sol1 == N[sol2]


                  I get:




                  4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                  True




                  which is what is desired.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited May 26 at 17:11

























                  answered May 26 at 17:05









                  TeMTeM

                  2,131621




                  2,131621





















                      7












                      $begingroup$

                      I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                      constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                      constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                      constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                      constraint4 = a^2 + b^2 + c^2 - 1;


                      Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                      obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                      Setting the derivatives with respect to each of the unknowns to 0:



                      eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                      Let's solve them:



                      sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                      1.77698, Null




                      Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                      r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                      a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                      e -> Sqrt[6],
                      f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                      2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                      1/2 (-4 Sqrt[3] - Sqrt[6])




                      So, the maximum value is:



                      d + e + f /. First [r]



                      4 Sqrt[3] + Sqrt[6]







                      share|improve this answer









                      $endgroup$

















                        7












                        $begingroup$

                        I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                        constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                        constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                        constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                        constraint4 = a^2 + b^2 + c^2 - 1;


                        Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                        obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                        Setting the derivatives with respect to each of the unknowns to 0:



                        eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                        Let's solve them:



                        sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                        1.77698, Null




                        Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                        r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                        a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                        e -> Sqrt[6],
                        f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                        2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                        1/2 (-4 Sqrt[3] - Sqrt[6])




                        So, the maximum value is:



                        d + e + f /. First [r]



                        4 Sqrt[3] + Sqrt[6]







                        share|improve this answer









                        $endgroup$















                          7












                          7








                          7





                          $begingroup$

                          I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                          constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                          constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                          constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                          constraint4 = a^2 + b^2 + c^2 - 1;


                          Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                          obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                          Setting the derivatives with respect to each of the unknowns to 0:



                          eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                          Let's solve them:



                          sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                          1.77698, Null




                          Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                          r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                          a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                          e -> Sqrt[6],
                          f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                          2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                          1/2 (-4 Sqrt[3] - Sqrt[6])




                          So, the maximum value is:



                          d + e + f /. First [r]



                          4 Sqrt[3] + Sqrt[6]







                          share|improve this answer









                          $endgroup$



                          I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                          constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                          constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                          constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                          constraint4 = a^2 + b^2 + c^2 - 1;


                          Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                          obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                          Setting the derivatives with respect to each of the unknowns to 0:



                          eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                          Let's solve them:



                          sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                          1.77698, Null




                          Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                          r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                          a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                          e -> Sqrt[6],
                          f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                          2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                          1/2 (-4 Sqrt[3] - Sqrt[6])




                          So, the maximum value is:



                          d + e + f /. First [r]



                          4 Sqrt[3] + Sqrt[6]








                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered May 26 at 20:33









                          Carl WollCarl Woll

                          83.2k3105216




                          83.2k3105216



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199132%2fhow-can-i-get-exact-maximal-value-of-this-expression%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                              Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                              Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020