Velocidade da luz Índice Notación e unidades | Descrición | Definición do metro | Comunicacións | Física | Historia | Notas | Véxase tamén | Menú de navegaciónUnderstanding the Properites of Matter43-44How is the speed of light measured?ArquivadoEinstein from "B" tono "Z "- Volume 9 of Einstein studies"Base unit definitions: Meter""Why is c the symbol for the speed of light?"o orixinal2006AmJPh..74..995M10.1119/1.2238887CRC Handbook of Chemistry and PhysicsHandbook of PhysicsThe Electronics HandbookQuantities, Units and Symbols in Physical ChemistryInstrumentation Reference Book"CODATA value: Speed of Light in Vacuum"From Sundials to Atomic Clocks: Understanding Time and FrequencyA Unified Grand Tour of Theoretical PhysicsA Broader View of Relativity: General Implications of Lorentz and Poincaré Invariance"Speed of light broken - an expert's view""Se encuentran errores en las medidas de los neutrinos superlumínicos""ICARUS no detecta neutrinos superlumínicos"o orixinal«Breaking the speed of light: CERN's neutrino experiment»"Lene Hau: Ralentizó un rayo luminoso"o orixinal"Lograron detener por completo y luego relanzar un rayo de luz""Resolution 1 of the 17th CGPM"The Natural Laws of the Universe: Understanding Fundamental Constantsastro.campus.ecp.frastro.campus.ecp.fre-print physics/980402010.3917/anso.132.0359Luz (velocidad de la)La velocidad de la luzID4167583-6speed-of-light3168
Constantes físicasFísicaÓpticaRelatividade
baleiroconstante físicafísicametros por segundosegundometrorelatividade especialvelocidaderadiación electromagnéticasistema de referencia inercialteoría da relatividadeespazo e o tempoequivalencia masa-enerxíavelocidadeíndice de refracciónmateriais transparentesaríndice de refracciónvidroluz visiblesondas espaciaisuniversoluzOle Christensen RømerXúpiterÍoNewtonJames Clerk MaxwellEcuacións de Maxwellmarco teóricoelectromagnetismoondas electromagnéticas1905Albert Einsteinsistema inercialteoría especial da relatividadeSistema Internacional de UnidadeslatínJames Clerk MaxwellWilhelm Eduard WeberRudolf KohlrauschPaul DrudeEinsteinpermeabilidade do baleiropermitividade do baleiroimpedancia característica do baleiroconstante físicaunidades naturaissistema de unidades xeometrizadofísicaradiación electromagnéticaluz visiblevectorialescalarconstante físicagravidadeteoría xeral da relatividadeecuacións de Maxwellcorfrecuenciaenerxíamomentumefecto Dopplerprincipio de relatividademarco de referenciarelatividade especialtransformación de Lorentztornan azuistórnanse vermelloscausalidadedilatación do temponúmero realcono de luzintervalomáis rápido que a luz1983permitividade eléctricaSIUpermeabilidade magnéticaSIUecuacións de Maxwellelectromagnetismoanos luzmeridianoParíslonxitude de ondafrecuencia19831967Conferencia Xeral de Pesos e Medidastempo atómiconiveis hiperfinosestado fundamentalátomocesio1983temperaturachoque mecánicobarra estándartelecomunicaciónsTerrakmliña ecuatorialfibra óptica2004AustraliaXapónEE.UU.comunicacións inalámbricascontrol terrestreHoustonNeil Armstrongconverteu no primeiro homeLúasuperordenadoresxigahertzchipsobservadortempo propiodilatación temporalkm/hEinsteinrelatividade especialGalileo Galileimarcos de referenciaecuacións de Maxwellséculo XIXexperimento de Michelson-Morleyéterrelatividade especialPauliíndice de refraccióníndice de refracciónaireaugavidrorefraccióndispersiónLei de Snellfotónselectrónsvelocidade de grupolásercesioinformaciónvelocidade frontalondas evanescentestúneles cuánticosvelocidade de fasemecánica cuánticaacción a distanciaparadoxa EPRestados cuánticosspinsuperposiciónleis da físicateorema de non clonaciónmovemento superluminarjet de Galaxia activaquásarsánguloondas expansivasinsoladopolarizadoscondutorexplosión sónicaradiación de Cerenkovmáis rápido que a luzciencia ficcióntaquiónsfísica de partículasJoãou MagueijoJohn Moffatvelocidade da luz variablecosmolóxicosmodelo inflacionario do universoCERNneutrinosstat.sys.FermilabCERNarco irisdensidade ópticacondensado de Bose-Einstein1999Lene Hau20012003Mijaíl LukinUniversidade HarvardLébedevrubidioEmpédoclesAristótelesHerón de AlexandríaAvicenaAlhazenAyranIndiaJohannes KeplerFrancis BaconRené DescartesSolTerraLúaeclipse lunarséculo XVIIrevolución científicaséculo XIXecuacións de Maxwell1629Isaac BeeckmanRené Descartescanónespello1638Galileolanterna1667Robert Hooke1676Ole RømerÍoXúpitertelescopioTerraChristiaan HuygensIsaac NewtonGiovanni Dominique CassiniJames Bradleyaberración da luzFriedrich Georg Wilhelm von StruveMagnus NyrenHippolyte Fizeau1849experimento de FizeauMarie Alfred CornuJoseph PerrotinLéon Foucault1862Simon NewcombAlbert Michelson1926Louis EsseninterferometríainterferometríaJames Clerk Maxwellconstante dieléctricapermeabilidade1887Albert MichelsonEdward Morleyexperimento Michelson-Morleyéterinterferómetro de Michelsonluz monocromáticaespellosinterferenciainterferómetroErnst Machcontracción de Lorentzresultado nuloteoría da relatividadeprincipio de causalidadeequivalencia dos marcos de inerciaBureau International des Poids et MesuresSistema Internacional
Velocidade da luz
Saltar ata a navegación
Saltar á procura
Nesta imaxe, unha luz láser móvese polo aire o 99,97% da velocidade da luz no baleiro[1] | |
Valores exactos | |
---|---|
Metros por segundo | 299.792.458 |
Lonxitude de Planck por tempo de Planck (i.e., unidades de Planck) | 1 |
Valores aproximados | |
Quilómetros por segundo | 300.000 |
Quilómetros por hora | 1.080 milions |
Unidades astronómicas por día | 173 |
Tempo aproximado que tarda a luz en percorrer... | |
un centímetro | 0,033 ns |
un metro | 3,3 ns |
un quilómetro | 3,3 μs |
unha milla | 5,4 μs |
ao redor do ecuador da Terra | 0,13 s |
desde a Terra á órbita xeoestacionaria e de volta | 0,24 s |
da Terra a Lúa | 1,3 s |
da Terra o Sol | 8,3 min |
da Terra a Alpha Centauri | 4,4 anos |
dun extremo o outro da Vía Láctea | 100.000 anos |
A velocidade da luz no baleiro, comunmente representada coa letra c, é unha constante física universal importante en moitos campos da física. O seu valor é de exactamente 299.792.458 metros por segundo (≈3.00 x 108 m/s) (1.079.252.848,8 km/h), un valor exacto, polo que a lonxitude do metro defínese a partir desta constante así como a definición estándar internacional de segundo.[2] Como explicación da exactitude citada, hai que ter en conta que aínda que anteriormente a velocidade da luz medíase en función de espazo e tempo e as súas unidades, hoxe en día é a unidade de lonxitude, o metro, a que é definida en función da velocidade da luz no baleiro, como o espazo que percorre a luz en 1/299.792.458 de segundo. De acordo coa relatividade especial, c é a velocidade máxima á que todas as partículas sen masa e os seus campos asociados (incluíndo a radiación electromagnética tal como a luz e as ondas gravitacionais) viaxan no baleiro. É tamén a velocidade da gravidade (é dicir, das ondas gravitatorias) predita polas teorías actuais. Estas partículas e ondas viaxan a c, independentemente do movemento da fonte ou do sistema de referencia inercial do observador. Na teoría da relatividade, c interrelaciona o espazo e o tempo, e tamén aparece na famosa ecuación de equivalencia masa-enerxía, E = mc2.[3]
Noutros medios, esta velocidade é menor e depende do índice de refracción. A velocidade á que a luz se propaga a través de materiais transparentes, como o vidro ou o ar, é menor que c. A relación entre c e a velocidade v á que viaxa a luz a través dun material denomínase o índice de refracción n do material (n = c / v). Por exemplo, o índice de refracción do vidro pola luz visible é tipicamente de aproximadamente 1,5, o que significa que a luz no vidro viaxa a c / 1,5 ≈ 200.000 km/s; o índice de refracción do aire pola luz visible é de 1,000293, polo que a velocidade da luz no aire é de 299 705 km/s (preto de 88 km/s máis lenta que c).
Nalgúns casos, pódese considerar, de xeito aproximado, que a luz e outras ondas electromagnéticas móvense "instantaneamente", pero para longas distancias e medidas moi sensibles á súa velocidade finita ten efectos perceptibles. Por exemplo, na comunicación con sondas espaciais afastadas, unha mensaxe pode tardar varios minutos e ata horas en ir desde a Terra ata a sonda. A luz das estrelas que vemos e nos deixaron fai moitos anos, o que permite estudar a historia do universo mediante a observación de obxectos distantes. A velocidade finita da luz tamén limita a velocidade máxima teórica dos ordenadores, xa que a información debe ser enviada dentro do ordenador dun chip a outro. Finalmente, a velocidade da luz pódese utilizar en medidas de tempo de voo para medir grandes distancias cunha alta precisión.
A primeira proba experimental de que a luz tiña unha velocidade finita (a diferenza de facelo de xeito instantánea) foi en 1676 e débese a Ole Christensen Rømer, que a calculou cunha precisión notable, cando estudaba o movemento aparente da lúa de Xúpiter Ío, tendo en conta o suporte técnico e teórico de que dispuña (Newton aínda non escribira os Principia Mathematica).
Foi en 1865 cando James Clerk Maxwell, e coas Ecuacións de Maxwell, cando se dispuxo dun marco teórico que insería a luz no eido do electromagnetismo, convertendo a velocidade da luz no baleiro, na velocidade das ondas electromagnéticas no mesmo.[4] Pero en 1905, será Albert Einstein, quen defendera que a velocidade da luz respecto calquera sistema inercial é independente do movemento da fonte de luz,[5] e explorou as consecuencias deste postulado a través da teoría especial da relatividade e mostrou que o parámetro c tiña relevancia fora do contexto da luz e o electromagnetismo. Logo de séculos de medidas cada vez máis precisas, en 1975 atopouse que a velocidade da luz era de 299.792.458 m/s, cunha incerteza de medida de 4 partes por mil millóns. En 1983, o metro foi redefinido no Sistema Internacional de Unidades (SI) como a distancia percorrida pola luz no baleiro en 1/299.792.458 segundos.[6] Como resultado, o valor numérico de c en metros por segundo queda actualmente fixado exactamente pola definición do metro.[7]
Índice
1 Notación e unidades
2 Descrición
3 Definición do metro
4 Comunicacións
5 Física
5.1 Velocidade constante para todos os marcos de referencia
5.2 Velocidade física e velocidade coordinada da luz
5.3 Interacción con materiais transparentes
5.4 Máis rápida ca luz
5.5 Experimentos para retardar a luz
6 Historia
6.1 Islam
6.2 Hinduísmo
6.3 Europa
6.4 Medición da velocidade da luz
6.4.1 Primeiros intentos
6.4.2 Primeiras medicións
6.4.3 Medidas directas
6.5 Relatividade
6.6 Patrón de referencia
7 Notas
8 Véxase tamén
8.1 Bibliografia
8.1.1 Bibliografias históricas
8.1.2 Bibliografias modernas
8.2 Outros artigos
8.3 Ligazóns externas
Notación e unidades |
Normalmente utilízase o símbolo c, de "constante" ou do latín celeritas ("rapidez") para denotar a velocidade da luz no baleiro.[8] Orixinalmente utilizábase o símbolo V para a velocidade da luz, introducido por James Clerk Maxwell en 1865 En 1856, Wilhelm Eduard Weber e Rudolf Kohlrausch usaran c para unha constante diferente que no futuro mostraríase ser igual a 2displaystyle sqrt 2 veces a velocidade da luz no baleiro. En 1894, Paul Drude redefiniu c ao seu significado moderno. En 1905, Einstein utilizou V nos seus artigos orixinais en alemán sobre a relatividade especial, pero en 1907 pasouse a c, que entón se converteu xa no símbolo estándar para a velocidade da luz.[9][10]
Ás veces, c utilízase para a velocidade das ondas en calquera medio, e c0 para a velocidade da luz no baleiro.[11] Esta notación onde se usa o subíndice, apoiada na documentación oficial do SI,[7] ten a mesma forma que outras constantes relacionadas: μ0 para a permeabilidade do baleiro ou constante magnética, ε0 para a permitividade do baleiro ou constante eléctrica, e Z0 para a impedancia característica do baleiro. Neste artigo utilízase c exclusivamente para a velocidade da luz no baleiro.
Desde 1983, o metro definiuse no SI como a distancia que a luz percorre no baleiro en 1/299.792.458 partes de segundo. Esta definición fixa a velocidade da luz no baleiro en exactamente 299.792.458 m/s.[12][13][14] Como unha constante física dimensional, o valor numérico de c é diferente para diferentes sistemas de unidades. Nas ramas da física na que c aparece a miúdo, como a relatividade, é común o uso dos sistemas de unidades naturais de medida ou o sistema de unidades xeometrizado, onde c=1.[15][16] Co uso destas unidades, c non aparece explicitamente porque a multiplicación ou división por 1 non afecta ao resultado.
Descrición |
De acordo coa física moderna toda radiación electromagnética (incluída a luz visible) propágase ou move a unha velocidade constante no baleiro, coñecida comunmente -aínda que impropiamente[Cómpre referencia]- como "velocidade da luz" (magnitude vectorial), no canto de "rapidez da luz" (magnitude escalar). Esta é unha constante física denotada como c. A rapidez c é tamén a rapidez da propagación da gravidade na teoría xeral da relatividade.
Unha consecuencia nas leis do electromagnetismo (tales como as ecuacións de Maxwell) é que a rapidez c da radiación electromagnética non depende da velocidade do obxecto que emite a radiación. Así, por exemplo, a luz emitida dunha fonte de luz que se move rapidamente viaxaría á mesma velocidade que a luz proveniente dunha fonte estacionaria (aínda que o cor, a frecuencia, a enerxía e o momentum da luz cambiarán). A frecuencia observada pode diferir entre dous observadores con velocidades diferentes, causando un fenómeno coñecido como efecto Doppler.
Se se combínase esta observación co principio de relatividade, conclúese que todos os observadores medirán a velocidade da luz no baleiro como unha mesma, sen importar o marco de referencia do observador ou a velocidade do obxecto que emite a luz. Debido a isto, pódese ver a c como unha constante física fundamental. Este feito, entón, pode ser usado como base na teoría de relatividade especial. A constante é a rapidez c, no canto da luz en si mesma, o cal é fundamental para a relatividade especial. Deste xeito, se a luz é dalgún xeito retardada para viaxar a unha velocidade menor a c, isto non afectará directamente á teoría de relatividade especial.
Observadores que viaxan a grandes velocidades atoparán que as distancias e os tempos distorsionanse de acordo coa transformación de Lorentz. Con todo, as transformacións distorsionan tempos e distancias de maneira que a velocidade da luz permanece constante. Unha persoa viaxando a unha velocidade próxima a c tamén atopará que as cores da luz á fronte se tornan azuis e atrás tórnanse vermellos.
Se a información puidese viaxar máis rápido que c nun marco de referencia, a causalidade sería violada: noutros marcos de referencia, a información sería recibida antes de ser mandada; así, a causa podería ser observada despois do efecto. Debido á dilatación do tempo da relatividade especial, o cociente do tempo percibido entre un observador externo e o tempo percibido por un observador que se move cada vez máis preto da velocidade da luz aproxímase a cero. Se algo puidese moverse máis rapidamente que a luz, este cociente non sería un número real. Tal violación da causalidade nunca se observou.
Un cono de luz define a situación que está en contacto causal e aquelas que non o están. Para expoñelo doutro xeito, a información propágase de e cara a un punto de rexións definidas por un cono de luz. O intervalo AB no diagrama á dereita é de "tipo tempo" (é dicir, hai un marco da referencia en que acontecemento A e B ocorren na mesma situación no espazo, separados soamente pola súa ocorrencia en tempos diferentes, e se A precede B nese caso entón A precede B en todos casos: non hai caso de referencia no cal o evento A e o evento B ocorran simultaneamente). Deste xeito, é hipoteticamente posible para a materia (ou a información) viaxar de A cara a B, así que pode haber unha relación causal (con A a causa e B o efecto).
Por outra banda, o intervalo AC é de "tipo espazo"[Cómpre referencia] (é dicir, existe un marco de referencia onde o evento A e o evento B ocorren simultaneamente). Con todo, tamén existen marcos nos que A precede a C ou no que C precede a A. Confinando un xeito de viaxar máis rápido que a luz, non será posible para ningunha materia (ou información) viaxar de A cara a C ou de C cara a A. Deste xeito non hai conexión causal entre A e C.
De acordo á definición actual, adoptada en 1983, a rapidez da luz é exactamente 299 792 458 m/s (aproximadamente 3 × 108 metros por segundo, 300 000 km/s ou 300 m por millonésima de s).
O valor de c define a permitividade eléctrica do baleiro (ε0displaystyle varepsilon _0) en unidades do SIU como:
- ε0=107/4πc2(en A2s4kg−1m−3=Fm−1)displaystyle varepsilon _0=10^7/4pi c^2quad mathrm (en~A^2,s^4,kg^-1,m^-3=F,m^-1)
A permeabilidade magnética do baleiro (μ0displaystyle mu _0) non é dependente de c e é definida en unidades do SIU como:
μ0=4π10−7(en kgms−2A−2=NA−2)displaystyle mu _0=4,pi ,10^-7quad mathrm (en~kg,m,s^-2,A^-2=N,A^-2) .
Estas constantes aparecen nas ecuacións de Maxwell, que describen o electromagnetismo e están relacionadas por:
- c=1ε0μ0displaystyle c=frac 1sqrt varepsilon _0mu _0
As distancias astronómicas son normalmente medidas en anos luz (que é a distancia que percorre a luz en un ano, aproximadamente 9.46 × 1012 km (9.46 billóns de km).
Definición do metro |
- Artigo principal: Metro.
Historicamente, o metro foi definido como unha fracción da lonxitude dun meridiano a través de París, con referencia á barra estándar e con referencia a unha lonxitude de onda dunha frecuencia particular da luz. Dende 1983 o metro foi definido en referencia ao segundo e a velocidade da luz.
En 1967 a XIII Conferencia Xeral de Pesos e Medidas definiu ao segundo do tempo atómico como a duración de 9 192 631 770 períodos de radiación correspondente á transición entre dous niveis hiperfinos do estado fundamental do átomo cesio-133, que na actualidade segue sendo a definición do segundo.
En 1983 a Conferencia Xeral de Pesos e Medidas definiu o metro como a lonxitude da traxectoria viaxada pola luz en absoluto baleiro durante un intervalo de tempo de1/299 792 458 de segundo, baseándose na constancia da rapidez da luz para todos os observadores. Isto significa que ao medir a rapidez da luz, ao achar calquera diferenza medible dos valores definidos, entón a lonxitude de tempo estándar é incorrecta, ou está a exhibir un cambio dende o último momento en que foi medida. Se tal cambio fose real na física, e non un erro adxudicable a unha perturbación (como un cambio de temperatura ou un choque mecánico), entón teríase feito un importante descubrimento.
A motivación no cambio da definición do metro, así como todos os cambios na definición de unidades, foi prover unha definición precisa da unidade que puidese doadamente ser usada para calibrar homoxeneamente dispositivos en todo o mundo. A barra estándar non era práctica neste sentido, xa que non podía ser sacada da súa cámara ou utilizada por dous científicos ao mesmo tempo. Tamén era propensa a cambios masivos de lonxitude (comparados á exactitude requirida) debido a variacións de temperatura, polo que requiriu un longo tempo de axustes, desgaste dos extremos, oxidación etc., o que se converteu en importantes problemas na busca da exactitude perfecta.
Comunicacións |
A velocidade da luz é de gran importancia para as telecomunicacións. Por exemplo, dado que o perímetro da Terra é de 40.075 km (na liña ecuatorial) e c é teoricamente a velocidade máis rápida na que un fragmento de información pode viaxar, o período máis curto de tempo para chegar ao outro extremo do globo terráqueo sería 0.067 s.
En realidade, o tempo de viaxe é un pouco máis longo, en parte debido a que a velocidade da luz é preto dun 30% menor nunha fibra óptica, e raramente existen traxectorias rectas nas comunicacións globais; ademais prodúcense atrasos cando o sinal pasa a través de interruptores eléctricos ou xeradores de sinais. En 2004, o retardo típico de recepción de sinais desde Australia ou Xapón cara aos EE.UU. era de 0.18 s. Adicionalmente, a velocidade da luz afecta ao deseño das comunicacións inalámbricas.
A velocidade finita da luz fíxose aparente a todo o mundo no control de comunicacións entre o control terrestre de Houston e Neil Armstrong, cando este se converteu no primeiro home que puxo un pé sobre a Lúa: logo de cada pregunta, Houston tiña que esperar preto de 3 s para o regreso dunha resposta aínda cando os astronautas respondían inmediatamente.
De xeito similar, o control remoto instantáneo dunha nave interplanetaria é imposible debido a que unha nave suficientemente afastada do noso planeta podería tardar algunhas horas desde que envía información ao centro de control terrestre e recibe as instrucións.
A velocidade da luz tamén pode ter influencia en distancias curtas. Nos superordenadores a velocidade da luz impón un límite de rapidez á que poden ser enviados os datos entre procesadores. Se un procesador opera a 1 xigahertz, o sinal só pode viaxar a un máximo de 300 mm nun ciclo único. Polo tanto, os procesadores deben ser colocados preto un doutro para minimizar os atrasos de comunicación. Se as frecuencias dun reloxo continúan incrementándose, a rapidez da luz finalmente converterase nun factor límite para o deseño interno de chips individuais.
Física |
Velocidade constante para todos os marcos de referencia |
É importante observar que a velocidade da luz non é un límite de velocidade no sentido convencional. Un observador que persegue un raio de luz mediríao ao moverse paralelamente el mesmo viaxando á mesma velocidade coma se fose un observador estacionario. Isto débese a que a velocidade medida por este observador depende non só da diferenza de distancias percorridas por el e polo raio, senón tamén do seu tempo propio que se ralentiza coa velocidade do observador. A ralentización do tempo ou dilatación temporal para o observador é tal que sempre percibirá a un raio de luz movéndose á mesma velocidade.
A maioría dos individuos están afeitos á regra da adición de velocidades: se dous coches se achegan desde direccións opostas, cada un viaxando a unha velocidade de 50 km/h, esperaríase (cun alto grao de precisión) que cada coche percibiría ao outro nunha velocidade combinada de 50 + 50=100 km/h. Isto sería correcto en todos os casos se puideramos ignorar que a medida física do tempo transcorrido é relativa segundo o estado de movemento do observador.
Con todo, a velocidades próximas á da luz, en resultados experimentais faise claro que esta regra non se pode aplicar pola dilatación temporal. Dúas naves que se aproximen unha a outra, cada unha viaxando ao 90% da velocidade da luz relativas a un terceiro observador entre elas, non se percibirán mutuamente a un 90% + 90%=180% da velocidade da luz. No seu lugar, cada unha percibirá á outra aproximándose a menos dun 99.5% da velocidade da luz. Este resultado dáse pola fórmula de adición da velocidade de Einstein:
- u=v+w1+vwc2displaystyle u=cfrac v+w1+cfrac vwc^2
onde v e w son as velocidades das naves observadas por un terceiro observador, e u é a velocidade de calquera das dúas naves observada pola outra.
Contrariamente á intuición natural, sen importar a velocidade á que un observador se mova relativamente cara a outro observador, ambos medirán a velocidade dun raio de luz que se aveciña co mesmo valor constante, a velocidade da luz.
A ecuación anterior foi derivada por Einstein da súa teoría de relatividade especial, a cal toma o principio de relatividade como premisa principal. Este principio (orixinalmente proposto por Galileo Galilei) require que actúen leis físicas do mesmo xeito en todos os marcos de referencia.
Xa que as ecuacións de Maxwell outorgan directamente unha velocidade da luz, debería ser o mesmo para cada observador; unha consecuencia que soaba obviamente equivocada para os físicos do século XIX, quen asumían que a velocidade da luz dada pola teoría de Maxwell é válida en relación ao "éter lumínico".
Pero o experimento de Michelson-Morley, poida que o máis famoso e útil experimento na historia da física, non puido atopar este éter, suxerindo no seu lugar que a velocidade da luz é unha constante en todos os marcos de referencia.
Aínda que non se sabe se Einstein coñecía os resultados dos experimentos de Michelson e Morley, el deu por feito que a velocidade da luz era constante, entendeuno como unha reafirmación do principio de relatividade de Galileo, e deduciu as consecuencias, agora coñecidas como a teoría da relatividade especial, que inclúen a anterior fórmula auto-intuitiva.
Velocidade física e velocidade coordinada da luz |
- Artigo principal: Velocidade coordenada da luz.
Debe terse presente, especialmente se se consideran sistemas de referencia non inerciais, que a observación experimental de constancia da luz refírese á velocidade física da luz. A diferenza entre ambas magnitudes ocasionou certos malentendidos aos teóricos de principios do século XX. Así Pauli chegou a escribir:
Con todo, ese comentario é certo predicado da velocidade coordenada da luz (cuxa definición non involucra os coeficientes métricos do tensor métrico), con todo, unha definición adecuada de velocidade física da luz involucrando as compoñentes do tensor métrico de sistemas de referencia non inerciais leva a que a velocidade física si sexa constante.
Interacción con materiais transparentes |
O índice de refracción dun material indica como de lenta é a velocidade da luz nese medio comparada co baleiro. A diminución da velocidade da luz nos materiais pode causar a refracción, segundo o demostrado por este prisma (no caso dunha luz branca que parte do prisma nun espectro de cores, a refracción coñécense como dispersión).
Ao pasar a través dos materiais, a luz propágase a unha velocidade menor que c polo cociente chamado «índice de refracción» do material. A rapidez da luz no aire é só levemente menor que c. Medios máis densos, como a auga e o vidro, poden diminuír máis a rapidez da luz, a fraccións como 3/4 e 2/3 de c. Esta diminución de velocidade tamén é responsable de dobrar a luz nunha interfase entre dous materiais con índices diferentes, un fenómeno coñecido como refracción.
O índice de refracción "n" dun medio vén dado pola seguinte expresión, onde "v" é a velocidade da luz nese medio:
- n=cvdisplaystyle n=frac cv
Xa que a velocidade da luz nos materiais depende do índice de refracción, e o índice de refracción depende da frecuencia da luz, a luz a diferentes frecuencias viaxa a diferentes velocidades a través do mesmo material. Isto pode causar distorsión en ondas electromagnéticas compostas por múltiples frecuencias; un fenómeno chamado dispersión.
Os ángulos de incidencia (i) e de refracción (r) entre dous medios, e os índices de refracción, están relacionados pola Lei de Snell. Os ángulos mídense con respecto ao vector normal á superficie entre os medios:
- ni⋅sinαi=nr⋅sinαrdisplaystyle n_icdot sin alpha _i=n_rcdot sin alpha _r
A escala microscópica, considerando a radiación electromagnética como unha partícula, a refracción é causada por unha absorción continua e re-emisión dos fotóns que compoñen a luz a través dos átomos ou moléculas polos que está atravesando. En certo sentido, a luz por si mesma viaxa só a través do baleiro existente entre estes átomos, e é impedida polos átomos. Alternativamente, considerando á radiación electromagnética como unha onda, as cargas de cada átomo (primariamente electróns) interferen cos campos eléctricos e electromagnéticos da radiación, retardando o seu progreso.
Máis rápida ca luz |
- Véxase tamén: Superlumínico.
Unha evidencia experimental recente demostra que é posible para a velocidade de grupo da luz exceder c. Un experimento fixo que a velocidade de grupo de raios láser viaxase distancias extremadamente curtas a través de átomos de cesio a 300 veces c. Con todo, non é posible usar esta técnica para transferir información máis rápido que c: a rapidez da transferencia de información depende da velocidade frontal (a rapidez na cal o primeiro incremento dun pulso sobre cero móvea adiante) e o produto da velocidade agrupada e a velocidade frontal é igual ao cadrado da velocidade normal da luz no material.
O exceder a velocidade de grupo da luz deste xeito, é comparable a exceder a velocidade do son emprazando persoas nunha liña espazada equidistantemente, e pedíndolles a todos que griten unha palabra un tras outro con intervalos curtos, cada un medindo o tempo ao mirar o seu propio reloxo para que non teñan que esperar a escoitar o grito da persoa previa.
A rapidez da luz tamén pode parecer superada en certo fenómeno que inclúe ondas evanescentes, tales como túneles cuánticos. Os experimentos indican que a velocidade de fase de ondas evanescentes poden exceder a c; con todo, parecería que nin a velocidade agrupada nin a velocidade frontal exceden c, así, de novo, non é posible que a información sexa transmitida máis rápido que c.
Nalgunhas interpretacións da mecánica cuántica, os efectos cuánticos poden ser retransmitidos a velocidades maiores que c (de feito, a acción a distancia percibiuse longamente como un problema coa mecánica cuántica: ver paradoxa EPR). Por exemplo, os estados cuánticos de dúas partículas poden estar enlazados, de maneira que o estado dunha partícula condicione o estado doutra partícula (expresándoo doutro xeito, un debe ter un spin de +½ e o outro de -½). Ata que as partículas son observadas, estas existen nunha superposición de dous estados cuánticos ( + ½, -½) e (-½, +½). Se as partículas son separadas e unha delas é observada para determinar o seu estado cuántico, entón o estado cuántico da segunda partícula determínase automaticamente. Se, nalgunhas interpretacións de mecánica cuántica, se presume que a información achega do estado cuántico é local para unha partícula, entón débese concluír que a segunda partícula toma o seu estado cuántico instantaneamente, axiña que como a primeira observación lévase a cabo. Con todo, é imposible controlar que estado cuántico tomará a primeira partícula cando sexa observada, así que ningunha información pode ser transmitida deste xeito. As leis da física tamén parecen previr que a información sexa transmitida a través de xeitos máis astutos, e isto levou á formulación de regras tales como o teorema de non clonación.
O chamado movemento superluminar tamén é visto en certos obxectos astronómicos, tales como os jet de Galaxia activa, galaxias activas e quásars. Con todo, estes jets non se moven realmente a velocidades excedentes á da luz: o movemento aparente superluminar é unha proxección do efecto causado por obxectos movéndose preto da velocidade da luz nun ángulo pequeno do horizonte de visión.
Aínda que pode soar paradoxal, é posible que as ondas expansivas formáronse coa radiación electromagnética, xa que unha partícula cargada que viaxa a través dun medio insolado, interrompe o campo electromagnético local no medio. Os electróns nos átomos do medio son desprazados e polarizados polo campo da partícula cargada, e os fotóns que son emitidos como electróns restáuranse a se mesmos para manter o equilibrio despois de que a interrupción pasou (nun condutor, a interrupción pode ser restaurada sen emitir un fotón).
En circunstancias normais, estes fotóns interferen destrutivamente uns con outros e non se detecta radiación. Con todo, se a interrupción viaxa máis rápida que os mesmos fotóns, os fotóns interferirán construtivamente e intensificarán a radiación observada. O resultado (análogo a unha explosión sónica) é coñecido como radiación de Cerenkov.
A habilidade de comunicarse ou viaxar máis rápido que a luz é un tema popular na ciencia ficción. Propuxéronse partículas que viaxan máis rápido que a luz, taquións, dobrados[Cómpre referencia] pola física de partículas, aínda que nunca se observaron.
Algúns físicos (entre eles Joãou Magueijo e John Moffat) propuxeron que no pasado a luz viaxaba moito máis rápido que á velocidade actual. Esta teoría coñécese como velocidade da luz variable, e os seus propoñentes afirman que este fenómeno ten a habilidade de explicar mellor moitos enigmas cosmolóxicos que a súa teoría rival, o modelo inflacionario do universo. Con todo, esta teoría non gañou suficiente aceptación.
En setembro do 2011, nas instalacións do CERN en Xenebra, do laboratorio subterráneo de Gran Sasso (Italia), observáronse uns neutrinos que aparentemente superaban a velocidade da luz, chegando (60.7 ± 6.9 (stat.) ± 7.4 (sys.)) nanosegundos antes (que corresponde a uns 18 metros nunha distancia total de 732 quilómetros). Desde o primeiro momento, a comunidade científica mostrouse escéptica ante a noticia, xa que varios anos antes, o proxecto Milos da Fermilab de Chicago obtivera resultados parecidos que foron descartados porque a marxe de erro era demasiado alto.[18] E, efectivamente, neste caso tamén resultou ser un erro de medición.[19][20] En febreiro de 2012, os científicos do CERN anunciaron que as medicións foran erróneas debido a unha conexión defectuosa.[21]
Experimentos para retardar a luz |
Fenómenos refractivos tales como o arco iris tenden a retardar a velocidade da luz nun medio (como a auga, por exemplo). En certo sentido, calquera luz que viaxa a través dun medio diferente do baleiro viaxa a unha velocidade menor que c como resultado da refracción. Con todo, certos materiais teñen un índice de refracción excepcionalmente alto: en particular, a densidade óptica do condensado de Bose-Einstein pode ser moi alta.
En 1999, un equipo de científicos encabezados por Lene Hau puido diminuír a velocidade dun raio de luz a preto de 17 m/s, e en 2001 puideron deter momentaneamente un raio de luz.[22]
En 2003, Mijaíl Lukin, xunto con científicos da Universidade Harvard e o Instituto de Física Lébedev (de Moscú), tiveron éxito en deter completamente a luz ao dirixila a unha masa de gas rubidio quente, cuxos átomos, en palabras de Lukin, comportáronse como «pequenos espellos» debido aos patróns de interferencia en dous raios de control.[23]
Historia |
Ata tempos relativamente recentes, a velocidade da luz foi un tema suxeito a grandes conxecturas. Empédocles cría que a luz era algo en movemento, e que polo tanto na súa viaxe tiña que transcorrer algún tempo.
Aristóteles pola contra, cría que «a luz está suxeita á presenza de algo, pero non é o movemento». Ademais, se a luz ten unha velocidade finita, esta tiña que ser inmensa. Aristóteles afirmou: «A tensión sobre o noso poder de crenzas é demasiado grande para crer isto».[Cómpre referencia]
Unha das teorías antigas da visión é que a luz é emitida polo ollo, en lugar de ser xerada por unha fonte e reflectida no ollo. Nesta teoría, Herón de Alexandría adiantou o argumento de que a velocidade da luz debería ser infinita, xa que cando un abre os ollos obxectos distantes como as estrelas aparecen inmediatamente.
Islam |
Os filósofos islámicos Avicena e Alhazen crían que a luz tiña unha velocidade finita, aínda que neste punto outros filósofos conviñeron con Aristóteles.[Cómpre referencia]
Hinduísmo |
A escola Ayran de filosofía na antiga India tamén mantivo que a velocidade da luz era finita.[Cómpre referencia]
Europa |
Johannes Kepler cría que a velocidade da luz era finita xa que o espazo baleiro non representa un obstáculo para ela. Francis Bacon argumentó que a velocidade da luz non é necesariamente finita, xa que algo pode viaxar tan rápido como para ser percibido.
René Descartes argumentó que se a velocidade da luz era finita, o Sol, a Terra e a Lúa estarían perceptiblemente fóra de aliñamento durante unha eclipse lunar. Debido a que tal desalineación non se observou, Descartes concluíu que a velocidade da luz é infinita. De feito, Descartes estaba convencido de que se a velocidade da luz era finita, todo o seu sistema de filosofía sería refutado.
Medición da velocidade da luz |
A historia da medición da velocidade da luz comeza no século XVII nos albores da revolución científica. Un estudo histórico relativo ás medicións da velocidade da luz sinala unha ducia de métodos diferentes para determinar o valor de "c".[24] A maior parte dos primeiros experimentos para intentar medir a velocidade da luz fracasaron debido ao seu alto valor, e tan só puidéronse obter medidas indirectas a partir de fenómenos astronómicos. No século XIX puidéronse realizar os primeiros experimentos directos de medición da velocidade da luz confirmando a súa natureza electromagnética e as ecuacións de Maxwell.
Primeiros intentos |
En 1629 Isaac Beeckman, un amigo de René Descartes, propuxo un experimento no que se puidese observar o flash dun canón reflectíndose nun espello situado a 1.6 km do primeiro. En 1638, Galileo propuxo un experimento para medir a velocidade da luz ao observar a percepción do atraso entre o lapso de destapar unha lanterna de lonxe. René Descartes criticou este experimento como algo superfluo, no feito de que a observación de eclipses, as cales tiñan máis poder para detectar unha rapidez finita, deu un resultado negativo. En 1667, este experimento levouse a cabo pola Academia do Cimento de Florencia, coas lanternas separadas a 1.6 km sen observarse ningún atraso. Robert Hooke explicou os resultados negativos tal como Galileo dixera: precisando que tales observacións non establecerían a infinita velocidade da luz senón tan só que dita velocidade debía ser moi grande.
Primeiras medicións |
En 1676 Ole Rømer realizou a primeira estimación cuantitativa da velocidade da luz estudando o movemento do satélite Ío de Xúpiter cun telescopio. É posible medir o tempo da revolución de Ío debido aos movementos da sombra entrante/salinte de Xúpiter en intervalos regulares. Rømer observou que Ío xira ao redor de Xúpiter cada 42.5 h cando a Terra esta máis preto de Xúpiter. Tamén observou que, como a Terra e Xúpiter móvense separándose, a saída de Ío fóra da proxección da sombra comezaría progresivamente máis tarde do predito. As observacións detalladas mostraban que estes sinais de saída necesitaban máis tempo en chegar á Terra, xa que a Terra e Xúpiter separabanse cada vez máis. Deste xeito o tempo extra utilizado pola luz para chegar á Terra podía utilizarse para deducir a rapidez desta. Seis meses despois, as entradas de Ío na proxección da sombra ocorrían con maior frecuencia xa que a Terra e Xúpiter achegábanse un a outro. Con base a estas observacións, Rømer estimou que a luz tardaría 22 min en cruzar o diámetro da órbita da Terra (é dicir, o dobre da unidade astronómica); as estimacións modernas achéganse máis á cifra de 16 min e 40 s.
Ao redor da mesma época, a unidade astronómica estimábase en preto de 140 millóns de km. A unidade astronómica e a estimación do tempo de Rømer foron combinados por Christiaan Huygens, quen considerou que a velocidade da luz era próxima a 1000 diámetros da Terra por minuto, é dicir, uns 220 000 km/s, moi por baixo do valor actualmente aceptado, pero moito máis rápido que calquera outro fenómeno físico entón coñecido.
Isaac Newton tamén aceptou o concepto de velocidade finita. No seu libro Opticks expón o valor máis preciso de 16 minutos por diámetro, o cal parece el deduciu por se mesmo (descoñécese se foi a partir dos datos de Rømer ou dalgunha outro xeito).[Cómpre referencia]
O mesmo efecto foi subsecuentemente observado por Rømer nun punto rotando coa superficie de Xúpiter. Observacións posteriores tamén mostraron o mesmo efecto coas outras tres lúas Galileanas, onde era máis difícil de observar ao estar estes satélites máis afastados de Xúpiter e proxectar sombras menores sobre o planeta.
Aínda que por medio destas observacións a velocidade finita da luz non foi establecida para a satisfacción de todos (notablemente Giovanni Dominique Cassini), logo das observacións de James Bradley (1728), a hipótese de velocidade infinita considerouse totalmente desacreditada. Bradley deduciu que a luz das estrelas que chega sobre a Terra parecería provir nun ángulo leve, que podería ser calculado ao comparar a velocidade da Terra na súa órbita coa velocidade da luz. Observouse esta chamada aberración da luz, estimándose en 1/200 dun grao.
Bradley calculou a velocidade da luz en ao redor de 298 000 km/s. Esta aproximación é soamente un pouco menor que o valor actualmente aceptado. O efecto de aberración foi estudado extensivamente nos séculos posteriores, notablemente por Friedrich Georg Wilhelm von Struve e Magnus Nyren.
Medidas directas |
A segunda medida acertada da velocidade da luz mediante un aparello terrestre foi realizada por Hippolyte Fizeau en 1849. O experimento de Fizeau era conceptualmente similar a aqueles propostos por Beeckman e Galileo. Un raio de luz dirixíase a un espello a centos de metros de distancia. No seu traxecto da fonte cara ao espello, o raio pasaba a través dunha engrenaxe rotatoria. A certo nivel de rotación, o raio pasaría a través dun orificio no seu camiño de saída e noutro no seu camiño de regreso. Pero en niveis lixeiramente menores, o raio proxectaríase nun dos dentes e non pasaría a través da roda. Coñecendo a distancia cara ao espello, o número de dentes da engrenaxe e o índice de rotación, poderíase calcular a velocidade da luz. Fizeau reportou a velocidade da luz como 313 000 km/s. O método de Fizeau foi refinado máis tarde por Marie Alfred Cornu (1872) e Joseph Perrotin (1900), pero foi o físico francés Léon Foucault quen máis profundou na mellora do método de Fizeau ao substituír a engrenaxe cun espello rotatorio. O valor estimado por Foucault, publicado en 1862, foi de 298 000 km/s. O método de Foucault tamén foi usado por Simon Newcomb e Albert Michelson, quen comezou a súa longa carreira replicando e mellorando este método.
En 1926, Michelson utilizou espellos rotatorios para medir o tempo que tardaba a luz en facer unha viaxe de ida e volta entre a montaña Wilson e a montaña San Antonio en California. As medidas exactas renderon unha velocidade de 299 796 km/s.
Outra forma de obter a velocidade da luz é medir independientemente a frecuencia fdisplaystyle f e a lonxitude da onda λdisplaystyle lambda dunha onda electromagnética no baleiro. O valor de c pode entón ser calculado mediante o uso da relación [c=fλ]displaystyle [c=flambda ]. Unha opción é medir a frecuencia de resonancia nunha cavidade de resonancia. Se se coñecen con precisión as súas dimensións, estas poden ser utilizadas para determinar a lonxitude de onda dun raio de luz. En 1946, Louis Essen e AC Gordon-Smith utilizaron este método (as dimensións da cavidade de resonancia establecéronse cunha precisión de ao redor de ± 0,8 micrómetros utilizando medidores calibrados por interferometría), obtendo un resultado de 299 792 ±9 kms/s, substancialmente máis preciso que os valores calculados usando técnicas ópticas. En 1950, as medicións repetidas estableceron un resultado de 299 792,5 ±3,0 kms/s.
A interferometría é outro método para atopar a lonxitude de onda da radiación electromagnética para determinar a velocidade da luz. Un raio de luz coherente (por exemplo, un láser), cunha frecuencia coñecida fdisplaystyle f, divídese seguindo dous percorridos distintos e logo recombinase. Mediante o axuste da lonxitude do camiño percorrido mentres se observa o patrón de interferencia, medindo cuidadosamente o cambio na lonxitude da traxectoria, pódese determinar a lonxitude de onda da luz λdisplaystyle lambda .
A velocidade da luz calcúlase como no caso anterior, utilizando a ecuación [c=fλ]displaystyle [c=flambda ].
Antes da chegada da tecnoloxía láser, utilizáronse fontes coherentes de radio para as medicións de interferometría da velocidade da luz. Con todo o método interferométrico vólvese menos preciso con lonxitudes de onda reducidas, e os experimentos foron xa que logo limitados á precisión da lonxitude de onda longa ( 0,4 cm ) das ondas de radio. A precisión pode ser mellorada mediante o uso de luz cunha lonxitude de onda máis curta, pero a continuación, faise difícil medir directamente a súa frecuencia. Unha forma de evitar este problema é comezar cun sinal de baixa frecuencia (cuxo valor pódese medir con precisión), e a partir deste sinal sintetizanse progresivamente sinais de frecuencias superiores, cuxa frecuencia pode entón relacionarse co sinal orixinal. A frecuencia dun láser pódese fixar con notable precisión, e a súa lonxitude de onda pódese determinar entón utilizando interferometría. Esta técnica desenvolveuna un grupo do National Bureau of Standards (NBS) (que máis tarde se converteu no NIST). Utilizouse en 1972 para medir a velocidade da luz no baleiro cunha incerteza fraccionaria de 3,5 × 10-−9.
Relatividade |
Con base no traballo de James Clerk Maxwell, sábese que a velocidade da radiación electromagnética é unha constante definida polas propiedades electromagnéticas do baleiro (constante dieléctrica e permeabilidade).
En 1887, os físicos Albert Michelson e Edward Morley realizaron o influente experimento Michelson-Morley para medir a velocidade da luz relativa ao movemento da Terra. A meta era medir a velocidade da Terra a través do éter, o medio que se pensaba nese entón necesario para a transmisión da luz. Tal como se mostra no diagrama do interferómetro de Michelson, utilizouse un espello con media cara prateada para dividir un raio de luz monocromática en dous raios que viaxaban en ángulos rectos un respecto do outro. Logo de abandonar a división, cada raio era reflectido de ida e volta entre os espellos en varias ocasións (o mesmo número para cada raio para dar unha lonxitude de traxectoria longa pero igual; o experimento Michelson-Morley actual usa máis espellos) entón unha vez recombinados producen un patrón de interferencia construtiva e destrutiva.
Calquera cambio menor na velocidade da luz en cada brazo do interferómetro cambiaría a cantidade de tempo utilizada no seu tránsito, que sería observado como un cambio no patrón de interferencia. No acontecemento, o experimento deu un resultado nulo.
O físico alemán Ernst Mach estivo entre os primeiros físicos que suxeriron que o resultado do experimento era unha refutación á teoría do éter. O desenvolvemento en física teórica comezara a prover unha teoría alternativa, a contracción de Lorentz, que explicaba o resultado nulo do experimento.
É incerto se Einstein sabía os resultados dos experimentos de Michelson e Morley, pero o seu resultado nulo contribuíu en gran medida á aceptación da súa teoría da relatividade. A teoría de Einstein non requiriu un elemento etérico senón que era completamente consistente co resultado nulo do experimento: o éter non existe e a velocidade da luz é a mesma en cada dirección. A velocidade constante da luz é un dos postulados fundamentais (xunto co principio de causalidade e a equivalencia dos marcos de inercia) da relatividade especial.
Patrón de referencia |
No ano 1983, o Bureau International des Poids et Mesures resolveu modificar a definición do metro como unidade de lonxitude do Sistema Internacional, establecendo a súa definición a partir da velocidade da luz:[25]
"The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second."
(O metro é a lonxitude do traxecto percorrido pola luz no baleiro durante un intervalo de tempo de 1/299 792 458 dun segundo)
En consecuencia, o mínimo reaxuste arbitrario efectuado na definición do metro, permite que a velocidade da luz, loxicamente, teña un valor exacto de 299 792 458 m/s cando se expresa en metros/segundo. Esta modificación aproveita de forma práctica unha das bases da teoría da relatividade de Einstein: a inmutabilidade da velocidade da luz no baleiro, sexa cal for o sistema de referencia utilizado para medila, convertendo esta propiedade nun dos patróns dos que se deducen outras unidades.
Notas |
↑ Michael De Podesta (2002). CRC Press, ed. Understanding the Properites of Matter (en inglés). p. 131. ISBN 0415257883. Consultado o 21/09/2014.
↑ Penrose 2004, p. 410-411:the most accurate standard for the metre is conveniently defined so that there are exactly 299,792,458 of them to the distance travelled by light in a standard second, giving a value for the metre that very accurately matches the now inadequately precise standard metre rule in Paris. o estándar do metro máis preciso defínese convenientemente de modo que sexa exactamente 299.792.458 a distancia que percorre a luz nun segundo estándar, resultando un valor do metro que coincide actualmente de xeito estándar mais precisa que a inadecuada e imprecisa do metro de París. Roger PenroseThe Road to Reality: A Complete Guide to the Laws of the Universe
↑ Uzan & Leclercq 2008, p. 43-44.
↑ How is the speed of light measured? Arquivado 21 de agosto de 2015 en Wayback Machine. Philip Gibbs (1997) (en inglés)
↑ Stachel, JJ (2002). Springer, ed. Einstein from "B" tono "Z "- Volume 9 of Einstein studies (en inglés). p. 226. ISBN 0-8176-4143-2.
↑
"Base unit definitions: Meter" (en inglés). National Institute of Standards and Technology. Consultado o 24 de xullo do 2017.
↑ 7,07,1 International Bureau of weight and Measures, ed. (2006). The International System of Unidos (SI) (8a ed. ed.). p. 112. ISBN 92-822-2213-6.
↑ A C maiúscula é o símbolo nno Sistema Internacional de Unidades (SI) do culombio.
↑ Gibbs, P (2004) [1997]. Universidade de California, Riverside, ed. "Why is c the symbol for the speed of light?". Usenet Physics FAQ. Arquivado dende o orixinal o 17 de novembro de 2009. Consultado o 2009-11-16.
↑
Mendelson, KS (2006). "The story of c". American Journal of Physics 74 (11): 995–997. Bibcode:2006AmJPh..74..995M. doi:10.1119/1.2238887.
↑ Véxase, por exemplo:
Lide, DR (2004). CRC Press, ed. CRC Handbook of Chemistry and Physics. pp. 2–9. ISBN 0-8493-0485-7.
Harris, JW; et al. (2002). Springer, ed. Handbook of Physics. p. 499. ISBN 0-387-95269-1.
Whitaker, JC (2005). CRC Press, ed. The Electronics Handbook. p. 235. ISBN 0-8493-1889-0.
Cohen, ER; et al. (2007). Quantities, Units and Symbols in Physical Chemistry (3a ed. ed.). Royal Society of Chemistry. p. 184. ISBN 0-85404-433-7.
↑
Boyes, W (2003). "Measurement of length". Instrumentation Reference Book (3a ed. ed.). Butterworth–Heinemann. p. 56. ISBN 0-7506-7123-8.... if the speed of light is defined as a fixed number then, in principle, the time standard will serve as the length standard ...
↑
NIST (ed.). "CODATA value: Speed of Light in Vacuum". The NIST reference on Constants, Units, and Uncertainty. Consultado o 2009-08-21.
↑
Jespersen, J; Fitz-Randolph, J; Robb, J (1999). From Sundials to Atomic Clocks: Understanding Time and Frequency (1977a ed. ed.). Courier Dover. p. 280. ISBN 0-486-40913-9.
↑
Lawrie, ID (2002). "Appendix C: Natural units". A Unified Grand Tour of Theoretical Physics (2a ed. ed.). CRC Press. p. 540. ISBN 0-7503-0604-1.
↑
Hsu, L (2006). "Appendix A: Systems of units and the development of relativity theories". En World Scientific. A Broader View of Relativity: General Implications of Lorentz and Poincaré Invariance (2a ed. ed.). pp. 427–8. ISBN 981-256-651-1.
↑ W. Pauli, Theory of Relativity, Pergamon Press, 1958
↑ (en inglés) Collins, N. The Telegraph, ed. "Speed of light broken - an expert's view". Consultado o 23-09-2011.
↑ Ciencia Kanija 2.0 (ed.). "Se encuentran errores en las medidas de los neutrinos superlumínicos" (en castelán). Consultado o 18 de xullo do 2015.
↑ "ICARUS no detecta neutrinos superlumínicos". Arquivado dende o orixinal o 22 de xullo de 2015. Consultado o 22 de decembro de 2014.
↑ (en inglés) «Breaking the speed of light: CERN's neutrino experiment» The Telegraph. Consultado o 9 de outubro de 2012.
↑ Katz, Ricardo Santiago (25 de xuño de 2007). Agencia Nova, ed. "Lene Hau: Ralentizó un rayo luminoso" (en castela). Arquivado dende o orixinal o 22/01/2015. Consultado o 21/01/2015.
↑ Glanz, James (19 de xaneiro de 2001). Diario Clarín, ed. "Lograron detener por completo y luego relanzar un rayo de luz" (en castelá). Consultado o 21/01/2015.
↑ D. Raynaud, "Les déterminations de la vitesse de la lumière (1676-1983). Etude de sociologie internaliste des sciences", L'Année Sociologique 63: 359-398
↑
BIPM, ed. (1983). "Resolution 1 of the 17th CGPM". Consultado o 23 de agosto de 2009.
Véxase tamén |
Wikimedia Commons ten máis contidos multimedia na categoría: Velocidade da luz |
Bibliografia |
Penrose, Roger (2004). Vintage Books, ed. The Road to Reality: A Complete Guide to the Laws of the Universe (en inglés). ISBN 978-0-679-77631-4.
Uzan, Jean-Philippe; Leclercq, Bénédicte (2008). Springer, ed. The Natural Laws of the Universe: Understanding Fundamental Constants (en inglés). ISBN 0-387-73454-6.
Bibliografias históricas |
- FIZEAU, H. L.: «Sur une experience relative a la vitesse de propogation de la lumiere», Comptes Rendus 29, 90-92, 132, 1849 (en francés).
- FOUCAULT, J. L.: «Determination experimentale de la vitesse de la lumiere: parallaxe du Soleil», en Comptes Rendus 55, 501-503, 792-796, 1862 (en francés).
- HALLEY, Edmund: «Monsieur Cassini, his New and Exact Tables for the Eclipses of the First Satellite of Jupiter, reduced to the Julian Stile and Meridian of London», en Philosophical Transactions 18, n.º 214, páx. 237-256, decembro de 1694 (en inglés).
- MICHELSON, A. A.: «Experimental Determination of the Velocity of Light», Proceedings of the American Association for the Advancement of Science 27, 71-77, 1878 (en inglés).
- MICHELSON, A.A., F. G. PEASE y F. PEARSON: «Measurement Of The Velocity Of Light In A Partial Vacuum», Astrophysical Journal 82, 26-61, 1935 (en inglés).
- NEWCOMB, Simon: «The Velocity of Light», en revista Nature, páx. 29-32, 13 de maio de 1886 (en inglés).
- PERROTIN, Joseph: «Sur la vitesse de la lumiere», en Comptes Rendus 131, 731-734, 1900 (en francés).
- RØMER, Ole: «Démonstration touchant le mouvement de la lumière», en Journal des Sçavans, 7 de decembro de 1676, páx. 223-236 (dispoñible en francés como solo texto en: astro.campus.ecp.fr), traducido como «A Demonstration concerning the Motion of Light», en Philosophical Transactions of the Royal Society, n.º 136, páx. 893-894; 25 de xuño de 1677, dispoñible en francés como solo texto en: astro.campus.ecp.fr).
Bibliografias modernas |
- JACKSON, John David: Classical electrodynamics, ISBN 0-471-30932-X, John Wiley & Sons, 2.ª edición, 1975; 3.ª edición, 1998 (en inglés).
- KAK, Subhash: «The Speed of Light and Purānic Cosmology», en T. R. N. Rao y Subhash Kak, Computing Science in Ancient India (páx. 80-90), dispoñible en e-print physics/9804020 en el arXiv, USL Press, Lafayette, 1998 (en inglés).
- MACKAY, R. J., y R. W. OLDFORD: «Scientific Method, Statistical Method and the Speed of Light», dispoñible en [1]), en Statistical Science 15(3), páx. 254-278, 2000 (en inglés).
RAYNAUD, D (2013). Les déterminations de la vitesse de la lumière (1676-1983). Etude de sociologie internaliste des sciences. L'Année Sociologique 63. pp. 359–398. doi:10.3917/anso.132.0359.
Outros artigos |
- Ano luz
- Relatividade xeral
- Astronomía
- Física
Ligazóns externas |
Luz (velocidad de la) (información acerca da velocidade da luz en AstroMía.com). (en castelán)
La velocidad de la luz (Instituto Nacional de Astrofisíca, Óptica e Electrónica en INAOEP.mx).(en castelán)
|
Categorías:
- Constantes físicas
- Física
- Óptica
- Relatividade
(RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.664","walltime":"1.091","ppvisitednodes":"value":2286,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":57664,"limit":2097152,"templateargumentsize":"value":3304,"limit":2097152,"expansiondepth":"value":11,"limit":40,"expensivefunctioncount":"value":4,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":31315,"limit":5000000,"entityaccesscount":"value":5,"limit":400,"timingprofile":["100.00% 655.459 1 -total"," 32.47% 212.822 1 Modelo:Listaref"," 28.63% 187.681 1 Modelo:Control_de_autoridades"," 17.65% 115.713 14 Modelo:Cita_libro"," 9.70% 63.602 1 Modelo:Infobox"," 9.49% 62.176 1 Modelo:Commonscat"," 9.07% 59.428 1 Modelo:Irmáns"," 8.57% 56.161 1 Modelo:Caixa_lateral"," 4.74% 31.081 2 Modelo:Icona_en_título"," 4.68% 30.701 5 Modelo:Cita_novas"],"scribunto":"limitreport-timeusage":"value":"0.282","limit":"10.000","limitreport-memusage":"value":4376665,"limit":52428800,"cachereport":"origin":"mw1304","timestamp":"20190529021940","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Velocidade da luz","url":"https://gl.wikipedia.org/wiki/Velocidade_da_luz","sameAs":"http://www.wikidata.org/entity/Q2111","mainEntity":"http://www.wikidata.org/entity/Q2111","author":"@type":"Organization","name":"Contribuidores dos projetos da Wikimedia","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2005-08-29T16:51:08Z","dateModified":"2019-01-22T05:55:21Z","image":"https://upload.wikimedia.org/wikipedia/commons/4/4c/Lasertests.jpg","headline":"velocidade na que todas as partu00edculas sen masa e os campos asociados viaxan no baleiro"(RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":185,"wgHostname":"mw1264"););