Valid term from quadratic sequence?Fibonacci function or sequenceSylvester's sequenceThe Squaring SequenceYet Unused PairsThe lowest initial numbers in a Fibonacci-like sequenceReconstruct an arithmetic sequenceCollection from a sequence that constitute a perfect squareFind Integral Roots of A PolynomialGenerate lowest degree polynomial from sequenceThe Written Digits Sequence

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

If I cast Expeditious Retreat, can I Dash as a bonus action on the same turn?

To string or not to string

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Do I have a twin with permutated remainders?

Today is the Center

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Fencing style for blades that can attack from a distance

Is a tag line useful on a cover?

What's the point of deactivating Num Lock on login screens?

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

Maximum likelihood parameters deviate from posterior distributions

How to find program name(s) of an installed package?

How much RAM could one put in a typical 80386 setup?

How do I create uniquely male characters?

Email Account under attack (really) - anything I can do?

Font hinting is lost in Chrome-like browsers (for some languages )

What would happen to a modern skyscraper if it rains micro blackholes?

Why do falling prices hurt debtors?

Why does Kotter return in Welcome Back Kotter?

What is the word for reserving something for yourself before others do?

Why doesn't H₄O²⁺ exist?



Valid term from quadratic sequence?


Fibonacci function or sequenceSylvester's sequenceThe Squaring SequenceYet Unused PairsThe lowest initial numbers in a Fibonacci-like sequenceReconstruct an arithmetic sequenceCollection from a sequence that constitute a perfect squareFind Integral Roots of A PolynomialGenerate lowest degree polynomial from sequenceThe Written Digits Sequence













10












$begingroup$


You are given four numbers. The first three are $a$, $b$, and $c$ respectively, for the sequence:



$$T_n=an^2+bn+c$$



You may take input of these four numbers in any way. The output should be one of two distinct outputs mentioned in your answer, one means that the fourth number is a term in the sequence (the above equation has at least one solution for $n$ which is an integer when $a$, $b$, $c$ and $T_n$ are substituted for the given values), the other means the opposite.



This is code golf, so the shortest answer in bytes wins. Your program should work for any input of $a, b, c, T_n$ where the numbers are negative or positive (or 0), decimal or integer. To avoid problems but keep some complexity, non-integers will always just end in $.5$. Standard loop-holes disallowed.



Test cases



a |b |c |T_n |Y/N
------------------------
1 |1 |1 |1 |Y #n=0
2 |3 |5 |2 |N
0.5 |1 |-2 |-0.5|Y #n=1
0.5 |1 |-2 |15.5|Y #n=5
0.5 |1 |-2 |3 |N
-3.5|2 |-6 |-934|Y #n=-16
0 |1 |4 |7 |Y #n=3
0 |3 |-1 |7 |N
0 |0 |0 |1 |N
0 |0 |6 |6 |Y #n=<anything>
4 |8 |5 |2 |N









share|improve this question











$endgroup$
















    10












    $begingroup$


    You are given four numbers. The first three are $a$, $b$, and $c$ respectively, for the sequence:



    $$T_n=an^2+bn+c$$



    You may take input of these four numbers in any way. The output should be one of two distinct outputs mentioned in your answer, one means that the fourth number is a term in the sequence (the above equation has at least one solution for $n$ which is an integer when $a$, $b$, $c$ and $T_n$ are substituted for the given values), the other means the opposite.



    This is code golf, so the shortest answer in bytes wins. Your program should work for any input of $a, b, c, T_n$ where the numbers are negative or positive (or 0), decimal or integer. To avoid problems but keep some complexity, non-integers will always just end in $.5$. Standard loop-holes disallowed.



    Test cases



    a |b |c |T_n |Y/N
    ------------------------
    1 |1 |1 |1 |Y #n=0
    2 |3 |5 |2 |N
    0.5 |1 |-2 |-0.5|Y #n=1
    0.5 |1 |-2 |15.5|Y #n=5
    0.5 |1 |-2 |3 |N
    -3.5|2 |-6 |-934|Y #n=-16
    0 |1 |4 |7 |Y #n=3
    0 |3 |-1 |7 |N
    0 |0 |0 |1 |N
    0 |0 |6 |6 |Y #n=<anything>
    4 |8 |5 |2 |N









    share|improve this question











    $endgroup$














      10












      10








      10


      0



      $begingroup$


      You are given four numbers. The first three are $a$, $b$, and $c$ respectively, for the sequence:



      $$T_n=an^2+bn+c$$



      You may take input of these four numbers in any way. The output should be one of two distinct outputs mentioned in your answer, one means that the fourth number is a term in the sequence (the above equation has at least one solution for $n$ which is an integer when $a$, $b$, $c$ and $T_n$ are substituted for the given values), the other means the opposite.



      This is code golf, so the shortest answer in bytes wins. Your program should work for any input of $a, b, c, T_n$ where the numbers are negative or positive (or 0), decimal or integer. To avoid problems but keep some complexity, non-integers will always just end in $.5$. Standard loop-holes disallowed.



      Test cases



      a |b |c |T_n |Y/N
      ------------------------
      1 |1 |1 |1 |Y #n=0
      2 |3 |5 |2 |N
      0.5 |1 |-2 |-0.5|Y #n=1
      0.5 |1 |-2 |15.5|Y #n=5
      0.5 |1 |-2 |3 |N
      -3.5|2 |-6 |-934|Y #n=-16
      0 |1 |4 |7 |Y #n=3
      0 |3 |-1 |7 |N
      0 |0 |0 |1 |N
      0 |0 |6 |6 |Y #n=<anything>
      4 |8 |5 |2 |N









      share|improve this question











      $endgroup$




      You are given four numbers. The first three are $a$, $b$, and $c$ respectively, for the sequence:



      $$T_n=an^2+bn+c$$



      You may take input of these four numbers in any way. The output should be one of two distinct outputs mentioned in your answer, one means that the fourth number is a term in the sequence (the above equation has at least one solution for $n$ which is an integer when $a$, $b$, $c$ and $T_n$ are substituted for the given values), the other means the opposite.



      This is code golf, so the shortest answer in bytes wins. Your program should work for any input of $a, b, c, T_n$ where the numbers are negative or positive (or 0), decimal or integer. To avoid problems but keep some complexity, non-integers will always just end in $.5$. Standard loop-holes disallowed.



      Test cases



      a |b |c |T_n |Y/N
      ------------------------
      1 |1 |1 |1 |Y #n=0
      2 |3 |5 |2 |N
      0.5 |1 |-2 |-0.5|Y #n=1
      0.5 |1 |-2 |15.5|Y #n=5
      0.5 |1 |-2 |3 |N
      -3.5|2 |-6 |-934|Y #n=-16
      0 |1 |4 |7 |Y #n=3
      0 |3 |-1 |7 |N
      0 |0 |0 |1 |N
      0 |0 |6 |6 |Y #n=<anything>
      4 |8 |5 |2 |N






      code-golf number decision-problem equation






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 2 days ago







      Artemis Fowl

















      asked Apr 3 at 14:19









      Artemis FowlArtemis Fowl

      2119




      2119




















          5 Answers
          5






          active

          oldest

          votes


















          6












          $begingroup$

          JavaScript (ES7), 70 bytes



          Returns a Boolean value.





          (a,b,c,t)=>(t-=c,(a*=2)?(x=(b*b+2*a*t)**.5-b)%a&&(x+b+b)%a:b?t%b:t)==0


          Try it online!



          How?



          For the sake of clarity, we define $d = T_n-c$. (The same variable $t$ is re-used to store this result in the JS code.)



          Case $aneq0$



          The equation really is quadratic:



          $$T_n=an^2+bn+c\
          an^2+bn-d=0$$



          With $a'=2a$, the discriminant is:



          $$Delta=b^2+2a'd$$



          and the roots are:



          $$n_0=frac-b-sqrtDeltaa'\
          n_1=frac-b+sqrtDeltaa'$$



          The equation admits an integer root if $sqrtDelta$ is an integer and either:



          $$beginalign&-b-sqrtDeltaequiv 0pmoda'\ text or &-b+sqrtDeltaequiv 0pmoda'endalign$$



          Case $a=0, bneq0$



          The equation is linear:



          $$T_n=bn+c\
          bn=d\
          n=fracdb$$



          It admits an integer root if $dequiv0pmod b$.



          Case $a=0, b=0$



          The equation is not depending on $n$ anymore:



          $$T_n=c\
          d=0$$






          share|improve this answer











          $endgroup$




















            4












            $begingroup$


            Jelly,  11  10 bytes



            _/Ær1Ẹ?%1Ạ


            A monadic Link which accepts a list of lists* [[c, b, a], [T_n]] and yields 0 if T_n is a valid solution or 1 if not.



            * admittedly taking a little liberty with "You may take input of these four numbers in any way".



            Try it online! Or see a test-suite.



            How?



            _/Ær1Ẹ?%1Ạ - Link: list of lists of integers, [[c, b, a], [T_n]]
            / - reduce by:
            _ - subtraction [c-T_n, b, a]
            ? - if...
            Ẹ - ...condition: any?
            Ær - ...then: roots of polynomial i.e. roots of a²x+bx+(c-T_n)=0
            1 - ...else: literal 1
            %1 - modulo 1 (vectorises) i.e. for each: keep any fractional part
            - note: (a+bi)%1 yields nan which is truthy
            Ạ - all? i.e. all had fractional parts?
            - note: all([]) yields 1



            If we could yield non-distinct results then _/Ær1Ẹ?ḞƑƇ would also work for 10 (it yields 1 when all values are solutions, otherwise a list of the distinct solutions and hence always an empty list when no solutions - this would also meet the standard Truthy vs Falsey definition)






            share|improve this answer











            $endgroup$








            • 2




              $begingroup$
              That input is perfectly fine.
              $endgroup$
              – Artemis Fowl
              Apr 3 at 18:21


















            1












            $begingroup$


            05AB1E, 35 bytes



            Æ©²Āi²4P³n+tÐdi(‚³-IJ·Ä%P}뮳Āi³%]_


            Port of @Arnauld's JavaScript answer, so make sure to upvote him!



            Takes the input in the format $[t,c], a, b$.



            Try it online



            Explanation:





            Æ # Reduce the (implicit) input-list by subtraction (`t-c`)
            © # Store this value in the register (without popping)
            ²Āi # If the second input `a` is not 0:
            ²4P # Calculate `(t-c)*a*4`
            ³n+ # Add the third input `b` squared to it: `(t-c)*a*4+b*b`
            t # Take the square-root of that
            # (NOTE: 05AB1E and JS behave differently for square-roots of
            # negative integers; JS produces NaN, whereas 05AB1E leaves the
            # integer unchanged, which is why we have the `di...}` here)
            Ð # Triplicate this square
            di # If the square is non-negative (>= 0):
            (‚ # Pair it with its negative
            ³- # Subtract the third input `b` from each
            Ä # Take the absolute value of both
            ²·Ä% # Modulo the absolute value of `a` doubled
            # (NOTE: 05AB1E and JS behave differently for negative modulos,
            # which is why we have the two `Ä` here)
            P # Then multiply both by taking the product
            } # And close the inner if-statement
            ë # Else (`a` is 0):
            ® # Push the `t-c` from the register
            ³Āi # If the third input `b` is not 0:
            ³% # Take modulo `b`
            ] # Close both if-else statements
            _ # And check if the result is 0
            # (which is output implicitly)





            share|improve this answer









            $endgroup$












            • $begingroup$
              Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
              $endgroup$
              – Arnauld
              2 days ago











            • $begingroup$
              @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
              $endgroup$
              – Kevin Cruijssen
              2 days ago






            • 1




              $begingroup$
              Besides, the results of Ų on negative inputs are inconsistent.
              $endgroup$
              – Arnauld
              2 days ago










            • $begingroup$
              @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
              $endgroup$
              – Kevin Cruijssen
              2 days ago



















            0












            $begingroup$


            Wolfram Language (Mathematica), 38 bytes



            Solve[n^2#+n#2+#3==#4,n,Integers]!=&


            Try it online!






            share|improve this answer









            $endgroup$




















              0












              $begingroup$


              Jelly, 15 bytes



              _3¦UÆr=Ḟ$;3ị=ɗẸ


              Try it online!



              Built-in helps here but doesn’t handle a=b=0 so this is handled specially.






              share|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ifUsing("editor", function ()
                StackExchange.using("externalEditor", function ()
                StackExchange.using("snippets", function ()
                StackExchange.snippets.init();
                );
                );
                , "code-snippets");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "200"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f182606%2fvalid-term-from-quadratic-sequence%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                5 Answers
                5






                active

                oldest

                votes








                5 Answers
                5






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                6












                $begingroup$

                JavaScript (ES7), 70 bytes



                Returns a Boolean value.





                (a,b,c,t)=>(t-=c,(a*=2)?(x=(b*b+2*a*t)**.5-b)%a&&(x+b+b)%a:b?t%b:t)==0


                Try it online!



                How?



                For the sake of clarity, we define $d = T_n-c$. (The same variable $t$ is re-used to store this result in the JS code.)



                Case $aneq0$



                The equation really is quadratic:



                $$T_n=an^2+bn+c\
                an^2+bn-d=0$$



                With $a'=2a$, the discriminant is:



                $$Delta=b^2+2a'd$$



                and the roots are:



                $$n_0=frac-b-sqrtDeltaa'\
                n_1=frac-b+sqrtDeltaa'$$



                The equation admits an integer root if $sqrtDelta$ is an integer and either:



                $$beginalign&-b-sqrtDeltaequiv 0pmoda'\ text or &-b+sqrtDeltaequiv 0pmoda'endalign$$



                Case $a=0, bneq0$



                The equation is linear:



                $$T_n=bn+c\
                bn=d\
                n=fracdb$$



                It admits an integer root if $dequiv0pmod b$.



                Case $a=0, b=0$



                The equation is not depending on $n$ anymore:



                $$T_n=c\
                d=0$$






                share|improve this answer











                $endgroup$

















                  6












                  $begingroup$

                  JavaScript (ES7), 70 bytes



                  Returns a Boolean value.





                  (a,b,c,t)=>(t-=c,(a*=2)?(x=(b*b+2*a*t)**.5-b)%a&&(x+b+b)%a:b?t%b:t)==0


                  Try it online!



                  How?



                  For the sake of clarity, we define $d = T_n-c$. (The same variable $t$ is re-used to store this result in the JS code.)



                  Case $aneq0$



                  The equation really is quadratic:



                  $$T_n=an^2+bn+c\
                  an^2+bn-d=0$$



                  With $a'=2a$, the discriminant is:



                  $$Delta=b^2+2a'd$$



                  and the roots are:



                  $$n_0=frac-b-sqrtDeltaa'\
                  n_1=frac-b+sqrtDeltaa'$$



                  The equation admits an integer root if $sqrtDelta$ is an integer and either:



                  $$beginalign&-b-sqrtDeltaequiv 0pmoda'\ text or &-b+sqrtDeltaequiv 0pmoda'endalign$$



                  Case $a=0, bneq0$



                  The equation is linear:



                  $$T_n=bn+c\
                  bn=d\
                  n=fracdb$$



                  It admits an integer root if $dequiv0pmod b$.



                  Case $a=0, b=0$



                  The equation is not depending on $n$ anymore:



                  $$T_n=c\
                  d=0$$






                  share|improve this answer











                  $endgroup$















                    6












                    6








                    6





                    $begingroup$

                    JavaScript (ES7), 70 bytes



                    Returns a Boolean value.





                    (a,b,c,t)=>(t-=c,(a*=2)?(x=(b*b+2*a*t)**.5-b)%a&&(x+b+b)%a:b?t%b:t)==0


                    Try it online!



                    How?



                    For the sake of clarity, we define $d = T_n-c$. (The same variable $t$ is re-used to store this result in the JS code.)



                    Case $aneq0$



                    The equation really is quadratic:



                    $$T_n=an^2+bn+c\
                    an^2+bn-d=0$$



                    With $a'=2a$, the discriminant is:



                    $$Delta=b^2+2a'd$$



                    and the roots are:



                    $$n_0=frac-b-sqrtDeltaa'\
                    n_1=frac-b+sqrtDeltaa'$$



                    The equation admits an integer root if $sqrtDelta$ is an integer and either:



                    $$beginalign&-b-sqrtDeltaequiv 0pmoda'\ text or &-b+sqrtDeltaequiv 0pmoda'endalign$$



                    Case $a=0, bneq0$



                    The equation is linear:



                    $$T_n=bn+c\
                    bn=d\
                    n=fracdb$$



                    It admits an integer root if $dequiv0pmod b$.



                    Case $a=0, b=0$



                    The equation is not depending on $n$ anymore:



                    $$T_n=c\
                    d=0$$






                    share|improve this answer











                    $endgroup$



                    JavaScript (ES7), 70 bytes



                    Returns a Boolean value.





                    (a,b,c,t)=>(t-=c,(a*=2)?(x=(b*b+2*a*t)**.5-b)%a&&(x+b+b)%a:b?t%b:t)==0


                    Try it online!



                    How?



                    For the sake of clarity, we define $d = T_n-c$. (The same variable $t$ is re-used to store this result in the JS code.)



                    Case $aneq0$



                    The equation really is quadratic:



                    $$T_n=an^2+bn+c\
                    an^2+bn-d=0$$



                    With $a'=2a$, the discriminant is:



                    $$Delta=b^2+2a'd$$



                    and the roots are:



                    $$n_0=frac-b-sqrtDeltaa'\
                    n_1=frac-b+sqrtDeltaa'$$



                    The equation admits an integer root if $sqrtDelta$ is an integer and either:



                    $$beginalign&-b-sqrtDeltaequiv 0pmoda'\ text or &-b+sqrtDeltaequiv 0pmoda'endalign$$



                    Case $a=0, bneq0$



                    The equation is linear:



                    $$T_n=bn+c\
                    bn=d\
                    n=fracdb$$



                    It admits an integer root if $dequiv0pmod b$.



                    Case $a=0, b=0$



                    The equation is not depending on $n$ anymore:



                    $$T_n=c\
                    d=0$$







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 2 days ago

























                    answered Apr 3 at 14:37









                    ArnauldArnauld

                    80.4k797333




                    80.4k797333





















                        4












                        $begingroup$


                        Jelly,  11  10 bytes



                        _/Ær1Ẹ?%1Ạ


                        A monadic Link which accepts a list of lists* [[c, b, a], [T_n]] and yields 0 if T_n is a valid solution or 1 if not.



                        * admittedly taking a little liberty with "You may take input of these four numbers in any way".



                        Try it online! Or see a test-suite.



                        How?



                        _/Ær1Ẹ?%1Ạ - Link: list of lists of integers, [[c, b, a], [T_n]]
                        / - reduce by:
                        _ - subtraction [c-T_n, b, a]
                        ? - if...
                        Ẹ - ...condition: any?
                        Ær - ...then: roots of polynomial i.e. roots of a²x+bx+(c-T_n)=0
                        1 - ...else: literal 1
                        %1 - modulo 1 (vectorises) i.e. for each: keep any fractional part
                        - note: (a+bi)%1 yields nan which is truthy
                        Ạ - all? i.e. all had fractional parts?
                        - note: all([]) yields 1



                        If we could yield non-distinct results then _/Ær1Ẹ?ḞƑƇ would also work for 10 (it yields 1 when all values are solutions, otherwise a list of the distinct solutions and hence always an empty list when no solutions - this would also meet the standard Truthy vs Falsey definition)






                        share|improve this answer











                        $endgroup$








                        • 2




                          $begingroup$
                          That input is perfectly fine.
                          $endgroup$
                          – Artemis Fowl
                          Apr 3 at 18:21















                        4












                        $begingroup$


                        Jelly,  11  10 bytes



                        _/Ær1Ẹ?%1Ạ


                        A monadic Link which accepts a list of lists* [[c, b, a], [T_n]] and yields 0 if T_n is a valid solution or 1 if not.



                        * admittedly taking a little liberty with "You may take input of these four numbers in any way".



                        Try it online! Or see a test-suite.



                        How?



                        _/Ær1Ẹ?%1Ạ - Link: list of lists of integers, [[c, b, a], [T_n]]
                        / - reduce by:
                        _ - subtraction [c-T_n, b, a]
                        ? - if...
                        Ẹ - ...condition: any?
                        Ær - ...then: roots of polynomial i.e. roots of a²x+bx+(c-T_n)=0
                        1 - ...else: literal 1
                        %1 - modulo 1 (vectorises) i.e. for each: keep any fractional part
                        - note: (a+bi)%1 yields nan which is truthy
                        Ạ - all? i.e. all had fractional parts?
                        - note: all([]) yields 1



                        If we could yield non-distinct results then _/Ær1Ẹ?ḞƑƇ would also work for 10 (it yields 1 when all values are solutions, otherwise a list of the distinct solutions and hence always an empty list when no solutions - this would also meet the standard Truthy vs Falsey definition)






                        share|improve this answer











                        $endgroup$








                        • 2




                          $begingroup$
                          That input is perfectly fine.
                          $endgroup$
                          – Artemis Fowl
                          Apr 3 at 18:21













                        4












                        4








                        4





                        $begingroup$


                        Jelly,  11  10 bytes



                        _/Ær1Ẹ?%1Ạ


                        A monadic Link which accepts a list of lists* [[c, b, a], [T_n]] and yields 0 if T_n is a valid solution or 1 if not.



                        * admittedly taking a little liberty with "You may take input of these four numbers in any way".



                        Try it online! Or see a test-suite.



                        How?



                        _/Ær1Ẹ?%1Ạ - Link: list of lists of integers, [[c, b, a], [T_n]]
                        / - reduce by:
                        _ - subtraction [c-T_n, b, a]
                        ? - if...
                        Ẹ - ...condition: any?
                        Ær - ...then: roots of polynomial i.e. roots of a²x+bx+(c-T_n)=0
                        1 - ...else: literal 1
                        %1 - modulo 1 (vectorises) i.e. for each: keep any fractional part
                        - note: (a+bi)%1 yields nan which is truthy
                        Ạ - all? i.e. all had fractional parts?
                        - note: all([]) yields 1



                        If we could yield non-distinct results then _/Ær1Ẹ?ḞƑƇ would also work for 10 (it yields 1 when all values are solutions, otherwise a list of the distinct solutions and hence always an empty list when no solutions - this would also meet the standard Truthy vs Falsey definition)






                        share|improve this answer











                        $endgroup$




                        Jelly,  11  10 bytes



                        _/Ær1Ẹ?%1Ạ


                        A monadic Link which accepts a list of lists* [[c, b, a], [T_n]] and yields 0 if T_n is a valid solution or 1 if not.



                        * admittedly taking a little liberty with "You may take input of these four numbers in any way".



                        Try it online! Or see a test-suite.



                        How?



                        _/Ær1Ẹ?%1Ạ - Link: list of lists of integers, [[c, b, a], [T_n]]
                        / - reduce by:
                        _ - subtraction [c-T_n, b, a]
                        ? - if...
                        Ẹ - ...condition: any?
                        Ær - ...then: roots of polynomial i.e. roots of a²x+bx+(c-T_n)=0
                        1 - ...else: literal 1
                        %1 - modulo 1 (vectorises) i.e. for each: keep any fractional part
                        - note: (a+bi)%1 yields nan which is truthy
                        Ạ - all? i.e. all had fractional parts?
                        - note: all([]) yields 1



                        If we could yield non-distinct results then _/Ær1Ẹ?ḞƑƇ would also work for 10 (it yields 1 when all values are solutions, otherwise a list of the distinct solutions and hence always an empty list when no solutions - this would also meet the standard Truthy vs Falsey definition)







                        share|improve this answer














                        share|improve this answer



                        share|improve this answer








                        edited Apr 3 at 19:00

























                        answered Apr 3 at 17:23









                        Jonathan AllanJonathan Allan

                        53.7k535173




                        53.7k535173







                        • 2




                          $begingroup$
                          That input is perfectly fine.
                          $endgroup$
                          – Artemis Fowl
                          Apr 3 at 18:21












                        • 2




                          $begingroup$
                          That input is perfectly fine.
                          $endgroup$
                          – Artemis Fowl
                          Apr 3 at 18:21







                        2




                        2




                        $begingroup$
                        That input is perfectly fine.
                        $endgroup$
                        – Artemis Fowl
                        Apr 3 at 18:21




                        $begingroup$
                        That input is perfectly fine.
                        $endgroup$
                        – Artemis Fowl
                        Apr 3 at 18:21











                        1












                        $begingroup$


                        05AB1E, 35 bytes



                        Æ©²Āi²4P³n+tÐdi(‚³-IJ·Ä%P}뮳Āi³%]_


                        Port of @Arnauld's JavaScript answer, so make sure to upvote him!



                        Takes the input in the format $[t,c], a, b$.



                        Try it online



                        Explanation:





                        Æ # Reduce the (implicit) input-list by subtraction (`t-c`)
                        © # Store this value in the register (without popping)
                        ²Āi # If the second input `a` is not 0:
                        ²4P # Calculate `(t-c)*a*4`
                        ³n+ # Add the third input `b` squared to it: `(t-c)*a*4+b*b`
                        t # Take the square-root of that
                        # (NOTE: 05AB1E and JS behave differently for square-roots of
                        # negative integers; JS produces NaN, whereas 05AB1E leaves the
                        # integer unchanged, which is why we have the `di...}` here)
                        Ð # Triplicate this square
                        di # If the square is non-negative (>= 0):
                        (‚ # Pair it with its negative
                        ³- # Subtract the third input `b` from each
                        Ä # Take the absolute value of both
                        ²·Ä% # Modulo the absolute value of `a` doubled
                        # (NOTE: 05AB1E and JS behave differently for negative modulos,
                        # which is why we have the two `Ä` here)
                        P # Then multiply both by taking the product
                        } # And close the inner if-statement
                        ë # Else (`a` is 0):
                        ® # Push the `t-c` from the register
                        ³Āi # If the third input `b` is not 0:
                        ³% # Take modulo `b`
                        ] # Close both if-else statements
                        _ # And check if the result is 0
                        # (which is output implicitly)





                        share|improve this answer









                        $endgroup$












                        • $begingroup$
                          Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                          $endgroup$
                          – Arnauld
                          2 days ago











                        • $begingroup$
                          @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago






                        • 1




                          $begingroup$
                          Besides, the results of Ų on negative inputs are inconsistent.
                          $endgroup$
                          – Arnauld
                          2 days ago










                        • $begingroup$
                          @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago
















                        1












                        $begingroup$


                        05AB1E, 35 bytes



                        Æ©²Āi²4P³n+tÐdi(‚³-IJ·Ä%P}뮳Āi³%]_


                        Port of @Arnauld's JavaScript answer, so make sure to upvote him!



                        Takes the input in the format $[t,c], a, b$.



                        Try it online



                        Explanation:





                        Æ # Reduce the (implicit) input-list by subtraction (`t-c`)
                        © # Store this value in the register (without popping)
                        ²Āi # If the second input `a` is not 0:
                        ²4P # Calculate `(t-c)*a*4`
                        ³n+ # Add the third input `b` squared to it: `(t-c)*a*4+b*b`
                        t # Take the square-root of that
                        # (NOTE: 05AB1E and JS behave differently for square-roots of
                        # negative integers; JS produces NaN, whereas 05AB1E leaves the
                        # integer unchanged, which is why we have the `di...}` here)
                        Ð # Triplicate this square
                        di # If the square is non-negative (>= 0):
                        (‚ # Pair it with its negative
                        ³- # Subtract the third input `b` from each
                        Ä # Take the absolute value of both
                        ²·Ä% # Modulo the absolute value of `a` doubled
                        # (NOTE: 05AB1E and JS behave differently for negative modulos,
                        # which is why we have the two `Ä` here)
                        P # Then multiply both by taking the product
                        } # And close the inner if-statement
                        ë # Else (`a` is 0):
                        ® # Push the `t-c` from the register
                        ³Āi # If the third input `b` is not 0:
                        ³% # Take modulo `b`
                        ] # Close both if-else statements
                        _ # And check if the result is 0
                        # (which is output implicitly)





                        share|improve this answer









                        $endgroup$












                        • $begingroup$
                          Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                          $endgroup$
                          – Arnauld
                          2 days ago











                        • $begingroup$
                          @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago






                        • 1




                          $begingroup$
                          Besides, the results of Ų on negative inputs are inconsistent.
                          $endgroup$
                          – Arnauld
                          2 days ago










                        • $begingroup$
                          @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago














                        1












                        1








                        1





                        $begingroup$


                        05AB1E, 35 bytes



                        Æ©²Āi²4P³n+tÐdi(‚³-IJ·Ä%P}뮳Āi³%]_


                        Port of @Arnauld's JavaScript answer, so make sure to upvote him!



                        Takes the input in the format $[t,c], a, b$.



                        Try it online



                        Explanation:





                        Æ # Reduce the (implicit) input-list by subtraction (`t-c`)
                        © # Store this value in the register (without popping)
                        ²Āi # If the second input `a` is not 0:
                        ²4P # Calculate `(t-c)*a*4`
                        ³n+ # Add the third input `b` squared to it: `(t-c)*a*4+b*b`
                        t # Take the square-root of that
                        # (NOTE: 05AB1E and JS behave differently for square-roots of
                        # negative integers; JS produces NaN, whereas 05AB1E leaves the
                        # integer unchanged, which is why we have the `di...}` here)
                        Ð # Triplicate this square
                        di # If the square is non-negative (>= 0):
                        (‚ # Pair it with its negative
                        ³- # Subtract the third input `b` from each
                        Ä # Take the absolute value of both
                        ²·Ä% # Modulo the absolute value of `a` doubled
                        # (NOTE: 05AB1E and JS behave differently for negative modulos,
                        # which is why we have the two `Ä` here)
                        P # Then multiply both by taking the product
                        } # And close the inner if-statement
                        ë # Else (`a` is 0):
                        ® # Push the `t-c` from the register
                        ³Āi # If the third input `b` is not 0:
                        ³% # Take modulo `b`
                        ] # Close both if-else statements
                        _ # And check if the result is 0
                        # (which is output implicitly)





                        share|improve this answer









                        $endgroup$




                        05AB1E, 35 bytes



                        Æ©²Āi²4P³n+tÐdi(‚³-IJ·Ä%P}뮳Āi³%]_


                        Port of @Arnauld's JavaScript answer, so make sure to upvote him!



                        Takes the input in the format $[t,c], a, b$.



                        Try it online



                        Explanation:





                        Æ # Reduce the (implicit) input-list by subtraction (`t-c`)
                        © # Store this value in the register (without popping)
                        ²Āi # If the second input `a` is not 0:
                        ²4P # Calculate `(t-c)*a*4`
                        ³n+ # Add the third input `b` squared to it: `(t-c)*a*4+b*b`
                        t # Take the square-root of that
                        # (NOTE: 05AB1E and JS behave differently for square-roots of
                        # negative integers; JS produces NaN, whereas 05AB1E leaves the
                        # integer unchanged, which is why we have the `di...}` here)
                        Ð # Triplicate this square
                        di # If the square is non-negative (>= 0):
                        (‚ # Pair it with its negative
                        ³- # Subtract the third input `b` from each
                        Ä # Take the absolute value of both
                        ²·Ä% # Modulo the absolute value of `a` doubled
                        # (NOTE: 05AB1E and JS behave differently for negative modulos,
                        # which is why we have the two `Ä` here)
                        P # Then multiply both by taking the product
                        } # And close the inner if-statement
                        ë # Else (`a` is 0):
                        ® # Push the `t-c` from the register
                        ³Āi # If the third input `b` is not 0:
                        ³% # Take modulo `b`
                        ] # Close both if-else statements
                        _ # And check if the result is 0
                        # (which is output implicitly)






                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered 2 days ago









                        Kevin CruijssenKevin Cruijssen

                        42.3k570217




                        42.3k570217











                        • $begingroup$
                          Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                          $endgroup$
                          – Arnauld
                          2 days ago











                        • $begingroup$
                          @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago






                        • 1




                          $begingroup$
                          Besides, the results of Ų on negative inputs are inconsistent.
                          $endgroup$
                          – Arnauld
                          2 days ago










                        • $begingroup$
                          @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago

















                        • $begingroup$
                          Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                          $endgroup$
                          – Arnauld
                          2 days ago











                        • $begingroup$
                          @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago






                        • 1




                          $begingroup$
                          Besides, the results of Ų on negative inputs are inconsistent.
                          $endgroup$
                          – Arnauld
                          2 days ago










                        • $begingroup$
                          @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                          $endgroup$
                          – Kevin Cruijssen
                          2 days ago
















                        $begingroup$
                        Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                        $endgroup$
                        – Arnauld
                        2 days ago





                        $begingroup$
                        Would Ų save some bytes? (Probably not since we later need to compute the square root anyway.)
                        $endgroup$
                        – Arnauld
                        2 days ago













                        $begingroup$
                        @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                        $endgroup$
                        – Kevin Cruijssen
                        2 days ago




                        $begingroup$
                        @Arnauld Unfortunately not for three reasons: 1. Ų with negative values somehow gives the value itself instead of 0.. 2. Ų with decimal values (even with .0) gives 0 instead of 1 whether they're a square or not (this is a bug which I will report to Adnan). 3. Even if both would have worked and -4.0 would result in 0 instead of -4.0 and 4.0 would result in 1 instead of 0, it would still be +2 bytes since we need the square-root and the triplicate would be separated duplicates: tÐdi vs DŲitD; or currently DÄïŲitD to fix the other two mentioned issues.
                        $endgroup$
                        – Kevin Cruijssen
                        2 days ago




                        1




                        1




                        $begingroup$
                        Besides, the results of Ų on negative inputs are inconsistent.
                        $endgroup$
                        – Arnauld
                        2 days ago




                        $begingroup$
                        Besides, the results of Ų on negative inputs are inconsistent.
                        $endgroup$
                        – Arnauld
                        2 days ago












                        $begingroup$
                        @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                        $endgroup$
                        – Kevin Cruijssen
                        2 days ago





                        $begingroup$
                        @Arnauld Wth.. that's indeed pretty weird. And the legacy version even gives a different, just as weird result.. :S I've reported the bugs, including your test TIO to Adnan in the 05AB1E chat.
                        $endgroup$
                        – Kevin Cruijssen
                        2 days ago












                        0












                        $begingroup$


                        Wolfram Language (Mathematica), 38 bytes



                        Solve[n^2#+n#2+#3==#4,n,Integers]!=&


                        Try it online!






                        share|improve this answer









                        $endgroup$

















                          0












                          $begingroup$


                          Wolfram Language (Mathematica), 38 bytes



                          Solve[n^2#+n#2+#3==#4,n,Integers]!=&


                          Try it online!






                          share|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$


                            Wolfram Language (Mathematica), 38 bytes



                            Solve[n^2#+n#2+#3==#4,n,Integers]!=&


                            Try it online!






                            share|improve this answer









                            $endgroup$




                            Wolfram Language (Mathematica), 38 bytes



                            Solve[n^2#+n#2+#3==#4,n,Integers]!=&


                            Try it online!







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered Apr 3 at 21:33









                            J42161217J42161217

                            13.8k21253




                            13.8k21253





















                                0












                                $begingroup$


                                Jelly, 15 bytes



                                _3¦UÆr=Ḟ$;3ị=ɗẸ


                                Try it online!



                                Built-in helps here but doesn’t handle a=b=0 so this is handled specially.






                                share|improve this answer











                                $endgroup$

















                                  0












                                  $begingroup$


                                  Jelly, 15 bytes



                                  _3¦UÆr=Ḟ$;3ị=ɗẸ


                                  Try it online!



                                  Built-in helps here but doesn’t handle a=b=0 so this is handled specially.






                                  share|improve this answer











                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$


                                    Jelly, 15 bytes



                                    _3¦UÆr=Ḟ$;3ị=ɗẸ


                                    Try it online!



                                    Built-in helps here but doesn’t handle a=b=0 so this is handled specially.






                                    share|improve this answer











                                    $endgroup$




                                    Jelly, 15 bytes



                                    _3¦UÆr=Ḟ$;3ị=ɗẸ


                                    Try it online!



                                    Built-in helps here but doesn’t handle a=b=0 so this is handled specially.







                                    share|improve this answer














                                    share|improve this answer



                                    share|improve this answer








                                    edited 2 days ago

























                                    answered Apr 3 at 16:46









                                    Nick KennedyNick Kennedy

                                    1,32649




                                    1,32649



























                                        draft saved

                                        draft discarded
















































                                        If this is an answer to a challenge…



                                        • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                                        • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                                          Explanations of your answer make it more interesting to read and are very much encouraged.


                                        • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.


                                        More generally…



                                        • …Please make sure to answer the question and provide sufficient detail.


                                        • …Avoid asking for help, clarification or responding to other answers (use comments instead).




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f182606%2fvalid-term-from-quadratic-sequence%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Club Baloncesto Breogán Índice Historia | Pavillón | Nome | O Breogán na cultura popular | Xogadores | Adestradores | Presidentes | Palmarés | Historial | Líderes | Notas | Véxase tamén | Menú de navegacióncbbreogan.galCadroGuía oficial da ACB 2009-10, páxina 201Guía oficial ACB 1992, páxina 183. Editorial DB.É de 6.500 espectadores sentados axeitándose á última normativa"Estudiantes Junior, entre as mellores canteiras"o orixinalHemeroteca El Mundo Deportivo, 16 setembro de 1970, páxina 12Historia do BreogánAlfredo Pérez, o último canoneiroHistoria C.B. BreogánHemeroteca de El Mundo DeportivoJimmy Wright, norteamericano do Breogán deixará Lugo por ameazas de morteResultados de Breogán en 1986-87Resultados de Breogán en 1990-91Ficha de Velimir Perasović en acb.comResultados de Breogán en 1994-95Breogán arrasa al Barça. "El Mundo Deportivo", 27 de setembro de 1999, páxina 58CB Breogán - FC BarcelonaA FEB invita a participar nunha nova Liga EuropeaCharlie Bell na prensa estatalMáximos anotadores 2005Tempada 2005-06 : Tódolos Xogadores da Xornada""Non quero pensar nunha man negra, mais pregúntome que está a pasar""o orixinalRaúl López, orgulloso dos xogadores, presume da boa saúde económica do BreogánJulio González confirma que cesa como presidente del BreogánHomenaxe a Lisardo GómezA tempada do rexurdimento celesteEntrevista a Lisardo GómezEl COB dinamita el Pazo para forzar el quinto (69-73)Cafés Candelas, patrocinador del CB Breogán"Suso Lázare, novo presidente do Breogán"o orixinalCafés Candelas Breogán firma el mayor triunfo de la historiaEl Breogán realizará 17 homenajes por su cincuenta aniversario"O Breogán honra ao seu fundador e primeiro presidente"o orixinalMiguel Giao recibiu a homenaxe do PazoHomenaxe aos primeiros gladiadores celestesO home que nos amosa como ver o Breo co corazónTita Franco será homenaxeada polos #50anosdeBreoJulio Vila recibirá unha homenaxe in memoriam polos #50anosdeBreo"O Breogán homenaxeará aos seus aboados máis veteráns"Pechada ovación a «Capi» Sanmartín e Ricardo «Corazón de González»Homenaxe por décadas de informaciónPaco García volve ao Pazo con motivo do 50 aniversario"Resultados y clasificaciones""O Cafés Candelas Breogán, campión da Copa Princesa""O Cafés Candelas Breogán, equipo ACB"C.B. Breogán"Proxecto social"o orixinal"Centros asociados"o orixinalFicha en imdb.comMario Camus trata la recuperación del amor en 'La vieja música', su última película"Páxina web oficial""Club Baloncesto Breogán""C. B. Breogán S.A.D."eehttp://www.fegaba.com

                                        Vilaño, A Laracha Índice Patrimonio | Lugares e parroquias | Véxase tamén | Menú de navegación43°14′52″N 8°36′03″O / 43.24775, -8.60070

                                        Cegueira Índice Epidemioloxía | Deficiencia visual | Tipos de cegueira | Principais causas de cegueira | Tratamento | Técnicas de adaptación e axudas | Vida dos cegos | Primeiros auxilios | Crenzas respecto das persoas cegas | Crenzas das persoas cegas | O neno deficiente visual | Aspectos psicolóxicos da cegueira | Notas | Véxase tamén | Menú de navegación54.054.154.436928256blindnessDicionario da Real Academia GalegaPortal das Palabras"International Standards: Visual Standards — Aspects and Ranges of Vision Loss with Emphasis on Population Surveys.""Visual impairment and blindness""Presentan un plan para previr a cegueira"o orixinalACCDV Associació Catalana de Cecs i Disminuïts Visuals - PMFTrachoma"Effect of gene therapy on visual function in Leber's congenital amaurosis"1844137110.1056/NEJMoa0802268Cans guía - os mellores amigos dos cegosArquivadoEscola de cans guía para cegos en Mortágua, PortugalArquivado"Tecnología para ciegos y deficientes visuales. Recopilación de recursos gratuitos en la Red""Colorino""‘COL.diesis’, escuchar los sonidos del color""COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device"o orixinal"Sistema de desarrollo de sinestesia color-sonido para invidentes utilizando un protocolo de audio""Enseñanza táctil - geometría y color. Juegos didácticos para niños ciegos y videntes""Sistema Constanz"L'ocupació laboral dels cecs a l'Estat espanyol està pràcticament equiparada a la de les persones amb visió, entrevista amb Pedro ZuritaONCE (Organización Nacional de Cegos de España)Prevención da cegueiraDescrición de deficiencias visuais (Disc@pnet)Braillín, un boneco atractivo para calquera neno, con ou sen discapacidade, que permite familiarizarse co sistema de escritura e lectura brailleAxudas Técnicas36838ID00897494007150-90057129528256DOID:1432HP:0000618D001766C10.597.751.941.162C97109C0155020