What killed these X2 caps?Are 5V ELDC super capacitors constructed with internal balancing resistors?What are these capacitors?Calculating capacitance required for a pulse duration of time T using a class AB amplifierwhat frequencies do caps filter?Capacitors when to not use on linear voltageReplace foil caps with ceramic caps?Can an X-class safety capacitor be used in series with a load (i.e. where steady current flows through it)?What is the type of these caps?Are these circuits equivalents (caps in parallel with VCC)Estimating actual capacitance for aluminum electrolytic capacitor in buffer application

Why can't I see bouncing of a switch on an oscilloscope?

can i play a electric guitar through a bass amp?

Arthur Somervell: 1000 Exercises - Meaning of this notation

The use of multiple foreign keys on same column in SQL Server

How to find program name(s) of an installed package?

How much RAM could one put in a typical 80386 setup?

Do VLANs within a subnet need to have their own subnet for router on a stick?

strToHex ( string to its hex representation as string)

How to write a macro that is braces sensitive?

"You are your self first supporter", a more proper way to say it

Is this a crack on the carbon frame?

Which models of the Boeing 737 are still in production?

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

What are the differences between the usage of 'it' and 'they'?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Is it legal for company to use my work email to pretend I still work there?

Today is the Center

What is the word for reserving something for yourself before others do?

the place where lots of roads meet

Theorem, big Paralist and Amsart

Why don't electron-positron collisions release infinite energy?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Can divisibility rules for digits be generalized to sum of digits

Why are 150k or 200k jobs considered good when there are 300k+ births a month?



What killed these X2 caps?


Are 5V ELDC super capacitors constructed with internal balancing resistors?What are these capacitors?Calculating capacitance required for a pulse duration of time T using a class AB amplifierwhat frequencies do caps filter?Capacitors when to not use on linear voltageReplace foil caps with ceramic caps?Can an X-class safety capacitor be used in series with a load (i.e. where steady current flows through it)?What is the type of these caps?Are these circuits equivalents (caps in parallel with VCC)Estimating actual capacitance for aluminum electrolytic capacitor in buffer application






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








24












$begingroup$


A few years ago, I designed an MCU-controlled dimmer driving a 150W mains halogen lamp. This is in Western Europe; 50Hz 230VAC. It uses X2-rated capacitors as capacitive droppers for the power supply, and another X2-rated capacitor for interference suppression:



Circuit diagram of MCU-controlled leading-edge phase cutting dimmer



The dimmer has gradually started misbehaving, and on debugging I found that all of the X2 caps have died (meaning they have less than 10% of their rated capacitance remaining):



Pictures of C1, C2, C5, Cnew



The caps in the picture:




  • C1, capacitive dropper, should be 100nF, measures 6.4nF


  • C2, capacitive dropper, should be 100nF, measures 6.9nF


  • C5, interference suppression, should be 100nF, measures 1.4nF


  • Cnew, fresh-ish cap from my junk bin, measures 93nF

All of them measure open circuit (>40MΩ) on resistance.



C1, C2, and Cnew are labeled MEX/TENTA MKP 0.1µF K X2 275VAC 40/100/21 [approval logos] EN 60384-14 01-14 250VAC; 275VAC nominal rated (significantly higher withstanding voltage, datasheet here). They are all from the same batch, bought in Sep 2016. I suspect 01-14 is a date code, so they'd be from early 2014.



C5 is from the same brand; it has virtually the same markings (except EN 132400), but is physically larger. I got it as part of some Velleman kit years ago, where it was also used as a suppression cap. No datasheet.



What caused these caps to lose their capacitance?



  • Is this deterioration normal behaviour for X2 caps? The dimmer saw a lot of use, being powered for an estimated 7000 hours.

  • Should I have derated the caps more? I agree 230VAC is pretty close to 275VAC, but as I understand it that is their nominal rating, and they should be able to handle transients way above that. Also, 275VAC seems by far the most common rating available on Digikey and the like.

  • Am I using the capacitors wrong somehow?

  • Are these capacitors from a bad brand/series/batch?

Update: Possibly relevant: the dimmer is powered through a mechanical switch, and has seen an estimated 1000 on/off switch cycles over its lifetime. Perhaps the transient from mechanical switching played a role?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Western Europe is 50 Hz, not 60 Hz.
    $endgroup$
    – Transistor
    Apr 3 at 19:41










  • $begingroup$
    @Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
    $endgroup$
    – marcelm
    Apr 3 at 19:54






  • 1




    $begingroup$
    230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
    $endgroup$
    – Ben Voigt
    Apr 3 at 20:53






  • 2




    $begingroup$
    @BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
    $endgroup$
    – marcelm
    2 days ago

















24












$begingroup$


A few years ago, I designed an MCU-controlled dimmer driving a 150W mains halogen lamp. This is in Western Europe; 50Hz 230VAC. It uses X2-rated capacitors as capacitive droppers for the power supply, and another X2-rated capacitor for interference suppression:



Circuit diagram of MCU-controlled leading-edge phase cutting dimmer



The dimmer has gradually started misbehaving, and on debugging I found that all of the X2 caps have died (meaning they have less than 10% of their rated capacitance remaining):



Pictures of C1, C2, C5, Cnew



The caps in the picture:




  • C1, capacitive dropper, should be 100nF, measures 6.4nF


  • C2, capacitive dropper, should be 100nF, measures 6.9nF


  • C5, interference suppression, should be 100nF, measures 1.4nF


  • Cnew, fresh-ish cap from my junk bin, measures 93nF

All of them measure open circuit (>40MΩ) on resistance.



C1, C2, and Cnew are labeled MEX/TENTA MKP 0.1µF K X2 275VAC 40/100/21 [approval logos] EN 60384-14 01-14 250VAC; 275VAC nominal rated (significantly higher withstanding voltage, datasheet here). They are all from the same batch, bought in Sep 2016. I suspect 01-14 is a date code, so they'd be from early 2014.



C5 is from the same brand; it has virtually the same markings (except EN 132400), but is physically larger. I got it as part of some Velleman kit years ago, where it was also used as a suppression cap. No datasheet.



What caused these caps to lose their capacitance?



  • Is this deterioration normal behaviour for X2 caps? The dimmer saw a lot of use, being powered for an estimated 7000 hours.

  • Should I have derated the caps more? I agree 230VAC is pretty close to 275VAC, but as I understand it that is their nominal rating, and they should be able to handle transients way above that. Also, 275VAC seems by far the most common rating available on Digikey and the like.

  • Am I using the capacitors wrong somehow?

  • Are these capacitors from a bad brand/series/batch?

Update: Possibly relevant: the dimmer is powered through a mechanical switch, and has seen an estimated 1000 on/off switch cycles over its lifetime. Perhaps the transient from mechanical switching played a role?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Western Europe is 50 Hz, not 60 Hz.
    $endgroup$
    – Transistor
    Apr 3 at 19:41










  • $begingroup$
    @Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
    $endgroup$
    – marcelm
    Apr 3 at 19:54






  • 1




    $begingroup$
    230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
    $endgroup$
    – Ben Voigt
    Apr 3 at 20:53






  • 2




    $begingroup$
    @BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
    $endgroup$
    – marcelm
    2 days ago













24












24








24


2



$begingroup$


A few years ago, I designed an MCU-controlled dimmer driving a 150W mains halogen lamp. This is in Western Europe; 50Hz 230VAC. It uses X2-rated capacitors as capacitive droppers for the power supply, and another X2-rated capacitor for interference suppression:



Circuit diagram of MCU-controlled leading-edge phase cutting dimmer



The dimmer has gradually started misbehaving, and on debugging I found that all of the X2 caps have died (meaning they have less than 10% of their rated capacitance remaining):



Pictures of C1, C2, C5, Cnew



The caps in the picture:




  • C1, capacitive dropper, should be 100nF, measures 6.4nF


  • C2, capacitive dropper, should be 100nF, measures 6.9nF


  • C5, interference suppression, should be 100nF, measures 1.4nF


  • Cnew, fresh-ish cap from my junk bin, measures 93nF

All of them measure open circuit (>40MΩ) on resistance.



C1, C2, and Cnew are labeled MEX/TENTA MKP 0.1µF K X2 275VAC 40/100/21 [approval logos] EN 60384-14 01-14 250VAC; 275VAC nominal rated (significantly higher withstanding voltage, datasheet here). They are all from the same batch, bought in Sep 2016. I suspect 01-14 is a date code, so they'd be from early 2014.



C5 is from the same brand; it has virtually the same markings (except EN 132400), but is physically larger. I got it as part of some Velleman kit years ago, where it was also used as a suppression cap. No datasheet.



What caused these caps to lose their capacitance?



  • Is this deterioration normal behaviour for X2 caps? The dimmer saw a lot of use, being powered for an estimated 7000 hours.

  • Should I have derated the caps more? I agree 230VAC is pretty close to 275VAC, but as I understand it that is their nominal rating, and they should be able to handle transients way above that. Also, 275VAC seems by far the most common rating available on Digikey and the like.

  • Am I using the capacitors wrong somehow?

  • Are these capacitors from a bad brand/series/batch?

Update: Possibly relevant: the dimmer is powered through a mechanical switch, and has seen an estimated 1000 on/off switch cycles over its lifetime. Perhaps the transient from mechanical switching played a role?










share|improve this question











$endgroup$




A few years ago, I designed an MCU-controlled dimmer driving a 150W mains halogen lamp. This is in Western Europe; 50Hz 230VAC. It uses X2-rated capacitors as capacitive droppers for the power supply, and another X2-rated capacitor for interference suppression:



Circuit diagram of MCU-controlled leading-edge phase cutting dimmer



The dimmer has gradually started misbehaving, and on debugging I found that all of the X2 caps have died (meaning they have less than 10% of their rated capacitance remaining):



Pictures of C1, C2, C5, Cnew



The caps in the picture:




  • C1, capacitive dropper, should be 100nF, measures 6.4nF


  • C2, capacitive dropper, should be 100nF, measures 6.9nF


  • C5, interference suppression, should be 100nF, measures 1.4nF


  • Cnew, fresh-ish cap from my junk bin, measures 93nF

All of them measure open circuit (>40MΩ) on resistance.



C1, C2, and Cnew are labeled MEX/TENTA MKP 0.1µF K X2 275VAC 40/100/21 [approval logos] EN 60384-14 01-14 250VAC; 275VAC nominal rated (significantly higher withstanding voltage, datasheet here). They are all from the same batch, bought in Sep 2016. I suspect 01-14 is a date code, so they'd be from early 2014.



C5 is from the same brand; it has virtually the same markings (except EN 132400), but is physically larger. I got it as part of some Velleman kit years ago, where it was also used as a suppression cap. No datasheet.



What caused these caps to lose their capacitance?



  • Is this deterioration normal behaviour for X2 caps? The dimmer saw a lot of use, being powered for an estimated 7000 hours.

  • Should I have derated the caps more? I agree 230VAC is pretty close to 275VAC, but as I understand it that is their nominal rating, and they should be able to handle transients way above that. Also, 275VAC seems by far the most common rating available on Digikey and the like.

  • Am I using the capacitors wrong somehow?

  • Are these capacitors from a bad brand/series/batch?

Update: Possibly relevant: the dimmer is powered through a mechanical switch, and has seen an estimated 1000 on/off switch cycles over its lifetime. Perhaps the transient from mechanical switching played a role?







capacitor mains x-capacitor






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 days ago







marcelm

















asked Apr 3 at 19:08









marcelmmarcelm

1,4671819




1,4671819







  • 2




    $begingroup$
    Western Europe is 50 Hz, not 60 Hz.
    $endgroup$
    – Transistor
    Apr 3 at 19:41










  • $begingroup$
    @Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
    $endgroup$
    – marcelm
    Apr 3 at 19:54






  • 1




    $begingroup$
    230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
    $endgroup$
    – Ben Voigt
    Apr 3 at 20:53






  • 2




    $begingroup$
    @BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
    $endgroup$
    – marcelm
    2 days ago












  • 2




    $begingroup$
    Western Europe is 50 Hz, not 60 Hz.
    $endgroup$
    – Transistor
    Apr 3 at 19:41










  • $begingroup$
    @Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
    $endgroup$
    – marcelm
    Apr 3 at 19:54






  • 1




    $begingroup$
    230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
    $endgroup$
    – Ben Voigt
    Apr 3 at 20:53






  • 2




    $begingroup$
    @BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
    $endgroup$
    – marcelm
    2 days ago







2




2




$begingroup$
Western Europe is 50 Hz, not 60 Hz.
$endgroup$
– Transistor
Apr 3 at 19:41




$begingroup$
Western Europe is 50 Hz, not 60 Hz.
$endgroup$
– Transistor
Apr 3 at 19:41












$begingroup$
@Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
$endgroup$
– marcelm
Apr 3 at 19:54




$begingroup$
@Transistor Of course! I'm not sure what I was thinking when I typed 60Hz... Thanks and fixed!
$endgroup$
– marcelm
Apr 3 at 19:54




1




1




$begingroup$
230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
$endgroup$
– Ben Voigt
Apr 3 at 20:53




$begingroup$
230VAC is RMS, is the capacitor withstand specification of 275VAC peak or RMS? You're exposing these to a cyclic peak of 325V, nevermind abnormal conditions.
$endgroup$
– Ben Voigt
Apr 3 at 20:53




2




2




$begingroup$
@BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
$endgroup$
– marcelm
2 days ago




$begingroup$
@BenVoigt See the datasheet I linked; they're rated for 275VAC mains usage; withstanding voltage is given as 1183VDC for 60 seconds + 2000VDC for 1 second.
$endgroup$
– marcelm
2 days ago










2 Answers
2






active

oldest

votes


















28












$begingroup$

These are Interference Suppression Capacitors and have excellent properties of flame retardance, self-healing, spark killers but these are NOT intended for continuous series pulse charging as they are used in this with a Triac in a dim Halogen surge load.



Although they do not come out and say this in the datasheet, my experience from similar MEX-X2 caps tells me this from prior experience and backed up by Vishay-Roederstein similar MKP X2 datasheets.



In the fine print TENTA specs indicate a MAXIMUM RISE TIME 250Vac:120V/microsecond. This implies the maximum current it can handle using Ic=CdV/dt with dV/dt rated at 120V/us max.



So how is the pulse current in this design?
C5 across Triac may see continuous current spikes of about 1 A when operating the bulb at 90 deg phase control on peak voltage.



This will significantly reduce the life of the capacitor.



For a 150W Tungsten lamp operating at 240Vrms 340Vp at 90 deg phase on Triac, the bulb draws about 100W and has cooled down to a dim 1200'K with R= 240 Ohms and C5 across Triac and 1.5mH inductor discharges the 350Vp cap voltage with the resistance of the Choke and triac



Vishay Roederstein AC-Capacitors, Suppression Capacitors APPLICATION NOTES
Class X2 AC 275 V (MKT)



• For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of
275 V (AC).
• These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used
.



These capacitors are not intended for series impedance application. For these situations in case safety approvals are requested, please refer to our special capacitors of 1772 series with internal series connection.




The F1772 datasheets are not much better.



These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used.
• These capacitors can be used for series impedance application in case safety approvals are requested.
The F1772 series caps also give warnings



In my experience if a datasheet does not include 1 of the following { ESR specs, or rated ripple current rms, then it is not intended for high pulse , low ESR operation. For example motor Start/Run Caps never include any of the above and are know to have poorer ESR characteristics since they operate in circuits with higher resistance unlike SMPS or AC diode/Triac offline switch caps.



Conclusion



  • Unreliable power dim design from high stress topology and selection of marginally unacceptable caps.


  • I could suggest a better AC-DC supply.



    enter image description here







share|improve this answer











$endgroup$












  • $begingroup$
    Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
    $endgroup$
    – marcelm
    2 days ago


















22












$begingroup$

The film capacitors are made to be "self healing" which just means that when they develop a short due to abuse the area around the short gets blown away, reducing the capacitance.



It appears your application has frequent transients either from within or without that exceed the design capability of the capacitors. You can try to track them down at the source, attempt to shunt them with something like a bipolar TVS across the caps, or buy better (higher voltage rated) capacitors.






share|improve this answer









$endgroup$












  • $begingroup$
    Or X1 if they will fit.
    $endgroup$
    – Robert Endl
    Apr 3 at 21:02






  • 4




    $begingroup$
    Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:11






  • 2




    $begingroup$
    Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:33











  • $begingroup$
    Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
    $endgroup$
    – xryl669
    Apr 3 at 21:43






  • 1




    $begingroup$
    C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
    $endgroup$
    – Sunnyskyguy EE75
    2 days ago












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");

StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430568%2fwhat-killed-these-x2-caps%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









28












$begingroup$

These are Interference Suppression Capacitors and have excellent properties of flame retardance, self-healing, spark killers but these are NOT intended for continuous series pulse charging as they are used in this with a Triac in a dim Halogen surge load.



Although they do not come out and say this in the datasheet, my experience from similar MEX-X2 caps tells me this from prior experience and backed up by Vishay-Roederstein similar MKP X2 datasheets.



In the fine print TENTA specs indicate a MAXIMUM RISE TIME 250Vac:120V/microsecond. This implies the maximum current it can handle using Ic=CdV/dt with dV/dt rated at 120V/us max.



So how is the pulse current in this design?
C5 across Triac may see continuous current spikes of about 1 A when operating the bulb at 90 deg phase control on peak voltage.



This will significantly reduce the life of the capacitor.



For a 150W Tungsten lamp operating at 240Vrms 340Vp at 90 deg phase on Triac, the bulb draws about 100W and has cooled down to a dim 1200'K with R= 240 Ohms and C5 across Triac and 1.5mH inductor discharges the 350Vp cap voltage with the resistance of the Choke and triac



Vishay Roederstein AC-Capacitors, Suppression Capacitors APPLICATION NOTES
Class X2 AC 275 V (MKT)



• For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of
275 V (AC).
• These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used
.



These capacitors are not intended for series impedance application. For these situations in case safety approvals are requested, please refer to our special capacitors of 1772 series with internal series connection.




The F1772 datasheets are not much better.



These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used.
• These capacitors can be used for series impedance application in case safety approvals are requested.
The F1772 series caps also give warnings



In my experience if a datasheet does not include 1 of the following { ESR specs, or rated ripple current rms, then it is not intended for high pulse , low ESR operation. For example motor Start/Run Caps never include any of the above and are know to have poorer ESR characteristics since they operate in circuits with higher resistance unlike SMPS or AC diode/Triac offline switch caps.



Conclusion



  • Unreliable power dim design from high stress topology and selection of marginally unacceptable caps.


  • I could suggest a better AC-DC supply.



    enter image description here







share|improve this answer











$endgroup$












  • $begingroup$
    Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
    $endgroup$
    – marcelm
    2 days ago















28












$begingroup$

These are Interference Suppression Capacitors and have excellent properties of flame retardance, self-healing, spark killers but these are NOT intended for continuous series pulse charging as they are used in this with a Triac in a dim Halogen surge load.



Although they do not come out and say this in the datasheet, my experience from similar MEX-X2 caps tells me this from prior experience and backed up by Vishay-Roederstein similar MKP X2 datasheets.



In the fine print TENTA specs indicate a MAXIMUM RISE TIME 250Vac:120V/microsecond. This implies the maximum current it can handle using Ic=CdV/dt with dV/dt rated at 120V/us max.



So how is the pulse current in this design?
C5 across Triac may see continuous current spikes of about 1 A when operating the bulb at 90 deg phase control on peak voltage.



This will significantly reduce the life of the capacitor.



For a 150W Tungsten lamp operating at 240Vrms 340Vp at 90 deg phase on Triac, the bulb draws about 100W and has cooled down to a dim 1200'K with R= 240 Ohms and C5 across Triac and 1.5mH inductor discharges the 350Vp cap voltage with the resistance of the Choke and triac



Vishay Roederstein AC-Capacitors, Suppression Capacitors APPLICATION NOTES
Class X2 AC 275 V (MKT)



• For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of
275 V (AC).
• These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used
.



These capacitors are not intended for series impedance application. For these situations in case safety approvals are requested, please refer to our special capacitors of 1772 series with internal series connection.




The F1772 datasheets are not much better.



These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used.
• These capacitors can be used for series impedance application in case safety approvals are requested.
The F1772 series caps also give warnings



In my experience if a datasheet does not include 1 of the following { ESR specs, or rated ripple current rms, then it is not intended for high pulse , low ESR operation. For example motor Start/Run Caps never include any of the above and are know to have poorer ESR characteristics since they operate in circuits with higher resistance unlike SMPS or AC diode/Triac offline switch caps.



Conclusion



  • Unreliable power dim design from high stress topology and selection of marginally unacceptable caps.


  • I could suggest a better AC-DC supply.



    enter image description here







share|improve this answer











$endgroup$












  • $begingroup$
    Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
    $endgroup$
    – marcelm
    2 days ago













28












28








28





$begingroup$

These are Interference Suppression Capacitors and have excellent properties of flame retardance, self-healing, spark killers but these are NOT intended for continuous series pulse charging as they are used in this with a Triac in a dim Halogen surge load.



Although they do not come out and say this in the datasheet, my experience from similar MEX-X2 caps tells me this from prior experience and backed up by Vishay-Roederstein similar MKP X2 datasheets.



In the fine print TENTA specs indicate a MAXIMUM RISE TIME 250Vac:120V/microsecond. This implies the maximum current it can handle using Ic=CdV/dt with dV/dt rated at 120V/us max.



So how is the pulse current in this design?
C5 across Triac may see continuous current spikes of about 1 A when operating the bulb at 90 deg phase control on peak voltage.



This will significantly reduce the life of the capacitor.



For a 150W Tungsten lamp operating at 240Vrms 340Vp at 90 deg phase on Triac, the bulb draws about 100W and has cooled down to a dim 1200'K with R= 240 Ohms and C5 across Triac and 1.5mH inductor discharges the 350Vp cap voltage with the resistance of the Choke and triac



Vishay Roederstein AC-Capacitors, Suppression Capacitors APPLICATION NOTES
Class X2 AC 275 V (MKT)



• For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of
275 V (AC).
• These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used
.



These capacitors are not intended for series impedance application. For these situations in case safety approvals are requested, please refer to our special capacitors of 1772 series with internal series connection.




The F1772 datasheets are not much better.



These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used.
• These capacitors can be used for series impedance application in case safety approvals are requested.
The F1772 series caps also give warnings



In my experience if a datasheet does not include 1 of the following { ESR specs, or rated ripple current rms, then it is not intended for high pulse , low ESR operation. For example motor Start/Run Caps never include any of the above and are know to have poorer ESR characteristics since they operate in circuits with higher resistance unlike SMPS or AC diode/Triac offline switch caps.



Conclusion



  • Unreliable power dim design from high stress topology and selection of marginally unacceptable caps.


  • I could suggest a better AC-DC supply.



    enter image description here







share|improve this answer











$endgroup$



These are Interference Suppression Capacitors and have excellent properties of flame retardance, self-healing, spark killers but these are NOT intended for continuous series pulse charging as they are used in this with a Triac in a dim Halogen surge load.



Although they do not come out and say this in the datasheet, my experience from similar MEX-X2 caps tells me this from prior experience and backed up by Vishay-Roederstein similar MKP X2 datasheets.



In the fine print TENTA specs indicate a MAXIMUM RISE TIME 250Vac:120V/microsecond. This implies the maximum current it can handle using Ic=CdV/dt with dV/dt rated at 120V/us max.



So how is the pulse current in this design?
C5 across Triac may see continuous current spikes of about 1 A when operating the bulb at 90 deg phase control on peak voltage.



This will significantly reduce the life of the capacitor.



For a 150W Tungsten lamp operating at 240Vrms 340Vp at 90 deg phase on Triac, the bulb draws about 100W and has cooled down to a dim 1200'K with R= 240 Ohms and C5 across Triac and 1.5mH inductor discharges the 350Vp cap voltage with the resistance of the Choke and triac



Vishay Roederstein AC-Capacitors, Suppression Capacitors APPLICATION NOTES
Class X2 AC 275 V (MKT)



• For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of
275 V (AC).
• These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used
.



These capacitors are not intended for series impedance application. For these situations in case safety approvals are requested, please refer to our special capacitors of 1772 series with internal series connection.




The F1772 datasheets are not much better.



These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse
programs must be used.
• These capacitors can be used for series impedance application in case safety approvals are requested.
The F1772 series caps also give warnings



In my experience if a datasheet does not include 1 of the following { ESR specs, or rated ripple current rms, then it is not intended for high pulse , low ESR operation. For example motor Start/Run Caps never include any of the above and are know to have poorer ESR characteristics since they operate in circuits with higher resistance unlike SMPS or AC diode/Triac offline switch caps.



Conclusion



  • Unreliable power dim design from high stress topology and selection of marginally unacceptable caps.


  • I could suggest a better AC-DC supply.



    enter image description here








share|improve this answer














share|improve this answer



share|improve this answer








edited Apr 3 at 21:47

























answered Apr 3 at 21:32









Sunnyskyguy EE75Sunnyskyguy EE75

70.8k226103




70.8k226103











  • $begingroup$
    Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
    $endgroup$
    – marcelm
    2 days ago
















  • $begingroup$
    Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
    $endgroup$
    – marcelm
    2 days ago















$begingroup$
Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
$endgroup$
– marcelm
2 days ago




$begingroup$
Interesting, thanks for the elaborate answer! It looks like I was too optimistic about the caps' tolerance for abuse. As for the capacitive dropper caps; the design current is 5mA RMS, so I'd be disappointed if that killed the caps, but perhaps switch-on/off transients did them in (I will test that). I should rethink the suppression part of the circuit though...
$endgroup$
– marcelm
2 days ago













22












$begingroup$

The film capacitors are made to be "self healing" which just means that when they develop a short due to abuse the area around the short gets blown away, reducing the capacitance.



It appears your application has frequent transients either from within or without that exceed the design capability of the capacitors. You can try to track them down at the source, attempt to shunt them with something like a bipolar TVS across the caps, or buy better (higher voltage rated) capacitors.






share|improve this answer









$endgroup$












  • $begingroup$
    Or X1 if they will fit.
    $endgroup$
    – Robert Endl
    Apr 3 at 21:02






  • 4




    $begingroup$
    Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:11






  • 2




    $begingroup$
    Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:33











  • $begingroup$
    Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
    $endgroup$
    – xryl669
    Apr 3 at 21:43






  • 1




    $begingroup$
    C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
    $endgroup$
    – Sunnyskyguy EE75
    2 days ago
















22












$begingroup$

The film capacitors are made to be "self healing" which just means that when they develop a short due to abuse the area around the short gets blown away, reducing the capacitance.



It appears your application has frequent transients either from within or without that exceed the design capability of the capacitors. You can try to track them down at the source, attempt to shunt them with something like a bipolar TVS across the caps, or buy better (higher voltage rated) capacitors.






share|improve this answer









$endgroup$












  • $begingroup$
    Or X1 if they will fit.
    $endgroup$
    – Robert Endl
    Apr 3 at 21:02






  • 4




    $begingroup$
    Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:11






  • 2




    $begingroup$
    Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:33











  • $begingroup$
    Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
    $endgroup$
    – xryl669
    Apr 3 at 21:43






  • 1




    $begingroup$
    C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
    $endgroup$
    – Sunnyskyguy EE75
    2 days ago














22












22








22





$begingroup$

The film capacitors are made to be "self healing" which just means that when they develop a short due to abuse the area around the short gets blown away, reducing the capacitance.



It appears your application has frequent transients either from within or without that exceed the design capability of the capacitors. You can try to track them down at the source, attempt to shunt them with something like a bipolar TVS across the caps, or buy better (higher voltage rated) capacitors.






share|improve this answer









$endgroup$



The film capacitors are made to be "self healing" which just means that when they develop a short due to abuse the area around the short gets blown away, reducing the capacitance.



It appears your application has frequent transients either from within or without that exceed the design capability of the capacitors. You can try to track them down at the source, attempt to shunt them with something like a bipolar TVS across the caps, or buy better (higher voltage rated) capacitors.







share|improve this answer












share|improve this answer



share|improve this answer










answered Apr 3 at 19:12









Spehro PefhanySpehro Pefhany

213k5162430




213k5162430











  • $begingroup$
    Or X1 if they will fit.
    $endgroup$
    – Robert Endl
    Apr 3 at 21:02






  • 4




    $begingroup$
    Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:11






  • 2




    $begingroup$
    Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:33











  • $begingroup$
    Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
    $endgroup$
    – xryl669
    Apr 3 at 21:43






  • 1




    $begingroup$
    C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
    $endgroup$
    – Sunnyskyguy EE75
    2 days ago

















  • $begingroup$
    Or X1 if they will fit.
    $endgroup$
    – Robert Endl
    Apr 3 at 21:02






  • 4




    $begingroup$
    Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:11






  • 2




    $begingroup$
    Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
    $endgroup$
    – Sunnyskyguy EE75
    Apr 3 at 21:33











  • $begingroup$
    Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
    $endgroup$
    – xryl669
    Apr 3 at 21:43






  • 1




    $begingroup$
    C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
    $endgroup$
    – Sunnyskyguy EE75
    2 days ago
















$begingroup$
Or X1 if they will fit.
$endgroup$
– Robert Endl
Apr 3 at 21:02




$begingroup$
Or X1 if they will fit.
$endgroup$
– Robert Endl
Apr 3 at 21:02




4




4




$begingroup$
Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
$endgroup$
– Sunnyskyguy EE75
Apr 3 at 21:11




$begingroup$
Are you sure these caps are rated for Pulse charging/discharging applications? I think it is for RF coupling or RFI suppression NOT switching 150W loads from Triacs or Offline diode pulse regulators that draw 10x peak/avg current for 10% ripple.
$endgroup$
– Sunnyskyguy EE75
Apr 3 at 21:11




2




2




$begingroup$
Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
$endgroup$
– Sunnyskyguy EE75
Apr 3 at 21:33





$begingroup$
Obviously the parts cannot tolerate this application and are all damaged. Self healing is only for random lightning events not absorbing 1~2A pulses every cycle.
$endgroup$
– Sunnyskyguy EE75
Apr 3 at 21:33













$begingroup$
Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
$endgroup$
– xryl669
Apr 3 at 21:43




$begingroup$
Even a higher voltage rated cap is not enough here, since the issue is the maximum current the cap can handle (in the order of 1A). You need a cap that can deal with such current without damage.
$endgroup$
– xryl669
Apr 3 at 21:43




1




1




$begingroup$
C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
$endgroup$
– Sunnyskyguy EE75
2 days ago





$begingroup$
C5 would be less stressful with 0.01uF, C1,C2 is affected the zener and diode shunt capacitance for 1kV transients with large currents so a Line filter with CM inductance would help there
$endgroup$
– Sunnyskyguy EE75
2 days ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Electrical Engineering Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430568%2fwhat-killed-these-x2-caps%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wikipedia:Vital articles Мазмуну Biography - Өмүр баян Philosophy and psychology - Философия жана психология Religion - Дин Social sciences - Коомдук илимдер Language and literature - Тил жана адабият Science - Илим Technology - Технология Arts and recreation - Искусство жана эс алуу History and geography - Тарых жана география Навигация менюсу

Bruxelas-Capital Índice Historia | Composición | Situación lingüística | Clima | Cidades irmandadas | Notas | Véxase tamén | Menú de navegacióneO uso das linguas en Bruxelas e a situación do neerlandés"Rexión de Bruxelas Capital"o orixinalSitio da rexiónPáxina de Bruselas no sitio da Oficina de Promoción Turística de Valonia e BruxelasMapa Interactivo da Rexión de Bruxelas-CapitaleeWorldCat332144929079854441105155190212ID28008674080552-90000 0001 0666 3698n94104302ID540940339365017018237

What should I write in an apology letter, since I have decided not to join a company after accepting an offer letterShould I keep looking after accepting a job offer?What should I do when I've been verbally told I would get an offer letter, but still haven't gotten one after 4 weeks?Do I accept an offer from a company that I am not likely to join?New job hasn't confirmed starting date and I want to give current employer as much notice as possibleHow should I address my manager in my resignation letter?HR delayed background verification, now jobless as resignedNo email communication after accepting a formal written offer. How should I phrase the call?What should I do if after receiving a verbal offer letter I am informed that my written job offer is put on hold due to some internal issues?Should I inform the current employer that I am about to resign within 1-2 weeks since I have signed the offer letter and waiting for visa?What company will do, if I send their offer letter to another company